Normalized defining polynomial
\( x^{20} - 9 x^{19} + 19 x^{18} + 62 x^{17} - 456 x^{16} + 1169 x^{15} - 789 x^{14} - 4736 x^{13} + 19679 x^{12} - 38905 x^{11} + 37211 x^{10} + 15536 x^{9} - 110601 x^{8} + 186715 x^{7} - 174859 x^{6} + 80352 x^{5} + 2712 x^{4} - 20490 x^{3} + 8434 x^{2} - 1198 x + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(327621456441316076356994116960256=2^{14}\cdot 11^{10}\cdot 29\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{3}{8} a^{9} + \frac{3}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{15} + \frac{1}{16} a^{13} + \frac{1}{16} a^{12} + \frac{1}{8} a^{11} + \frac{1}{4} a^{9} + \frac{1}{8} a^{7} - \frac{5}{16} a^{6} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{7}{16} a^{3} + \frac{1}{16} a^{2} - \frac{7}{16} a - \frac{5}{16}$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{7}{16} a^{7} + \frac{1}{4} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a^{2} - \frac{5}{16} a + \frac{3}{8}$, $\frac{1}{32} a^{17} + \frac{1}{32} a^{14} + \frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{16} a^{11} + \frac{7}{16} a^{9} + \frac{11}{32} a^{8} - \frac{3}{8} a^{7} + \frac{13}{32} a^{6} - \frac{15}{32} a^{5} - \frac{7}{32} a^{4} + \frac{1}{16} a^{3} - \frac{3}{16} a^{2} + \frac{7}{32} a - \frac{11}{32}$, $\frac{1}{32} a^{18} - \frac{1}{32} a^{15} + \frac{1}{32} a^{14} - \frac{3}{32} a^{13} - \frac{1}{8} a^{11} - \frac{1}{16} a^{10} - \frac{13}{32} a^{9} - \frac{3}{8} a^{8} - \frac{7}{32} a^{7} - \frac{5}{32} a^{6} + \frac{13}{32} a^{5} + \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{11}{32} a^{2} + \frac{3}{32} a - \frac{3}{16}$, $\frac{1}{1587607700095370014965280932032} a^{19} - \frac{2669961383167541079516056153}{793803850047685007482640466016} a^{18} - \frac{21410268847263134604573026955}{1587607700095370014965280932032} a^{17} - \frac{46577698379126910907068588199}{1587607700095370014965280932032} a^{16} - \frac{28776810563589006214673273141}{1587607700095370014965280932032} a^{15} - \frac{36630401545164974566336958123}{793803850047685007482640466016} a^{14} + \frac{75705892102944898777072674493}{1587607700095370014965280932032} a^{13} + \frac{50992963747930730443932645075}{1587607700095370014965280932032} a^{12} + \frac{41516296071267364583405359}{362136792904965788085146198} a^{11} + \frac{329267279962059431359655825903}{1587607700095370014965280932032} a^{10} + \frac{182783455819997915978378628733}{396901925023842503741320233008} a^{9} + \frac{82007790949916246689514074799}{396901925023842503741320233008} a^{8} + \frac{571640156518227349165132064091}{1587607700095370014965280932032} a^{7} - \frac{144685438180585617980363627529}{396901925023842503741320233008} a^{6} - \frac{490253241728346806067093469907}{1587607700095370014965280932032} a^{5} - \frac{177078267004366535836684660405}{1587607700095370014965280932032} a^{4} + \frac{651467750925458029855578614169}{1587607700095370014965280932032} a^{3} - \frac{352078810417059710327657824163}{1587607700095370014965280932032} a^{2} + \frac{320684859538860562281247451533}{1587607700095370014965280932032} a - \frac{530305703831676131364928899475}{1587607700095370014965280932032}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3029739699.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.14.2 | $x^{12} + 2 x^{4} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | 12T27 | $[4/3, 4/3]_{3}^{4}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.10.3 | $x^{12} + 220 x^{6} + 41503$ | $6$ | $2$ | $10$ | $C_3 : C_4$ | $[\ ]_{6}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.12.8.1 | $x^{12} - 339 x^{9} + 38307 x^{6} - 1442897 x^{3} + 20380920125$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |