Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} + 8 x^{17} - 36 x^{16} - 281 x^{15} + 891 x^{14} - 94 x^{13} - 6317 x^{12} + 25590 x^{11} - 25053 x^{10} - 80000 x^{9} + 303594 x^{8} - 244046 x^{7} - 755445 x^{6} + 1323427 x^{5} + 439442 x^{4} - 1638254 x^{3} + 346625 x^{2} + 438442 x - 143641 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3220908674307440977286699306640625=5^{10}\cdot 19^{5}\cdot 97^{2}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 97, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{735545766793222809888279420914016176199869304414962724377} a^{19} + \frac{361991918970488747478768152869823141119280676639956519946}{735545766793222809888279420914016176199869304414962724377} a^{18} + \frac{197092250961754586275185117661766718419170954859684808692}{735545766793222809888279420914016176199869304414962724377} a^{17} - \frac{261354635864312773239165434887717523389424744716227988695}{735545766793222809888279420914016176199869304414962724377} a^{16} - \frac{61830906930247410509842182054930758164773080073006207660}{735545766793222809888279420914016176199869304414962724377} a^{15} + \frac{326611268586728762296711235850386961804883564282591471674}{735545766793222809888279420914016176199869304414962724377} a^{14} - \frac{17236211484659328373864890762949109663600666448862432456}{43267398046660165287545848289059775070580547318527219081} a^{13} - \frac{348403802504648348483381896153125952303755028324149259428}{735545766793222809888279420914016176199869304414962724377} a^{12} + \frac{17626368246350948055268905115811069678699866367068188506}{38712935094380147888856811627053482957887858127103301283} a^{11} + \frac{257408279434664814050963435696774486701068592496821450118}{735545766793222809888279420914016176199869304414962724377} a^{10} + \frac{17302848407443892313685692453427655071848338988960249552}{735545766793222809888279420914016176199869304414962724377} a^{9} + \frac{37793183398455182376562242534802906974471511997907949188}{735545766793222809888279420914016176199869304414962724377} a^{8} + \frac{290387569961534399323838663543725636320294567427284256266}{735545766793222809888279420914016176199869304414962724377} a^{7} - \frac{356724773754905257921022855564788834150702845961460435265}{735545766793222809888279420914016176199869304414962724377} a^{6} - \frac{280536875465264450543508295300631823416906005835278061910}{735545766793222809888279420914016176199869304414962724377} a^{5} - \frac{278362300112193767696903461617972797623892994225837153180}{735545766793222809888279420914016176199869304414962724377} a^{4} - \frac{28425978021850841209985409118652190398561944228243517529}{735545766793222809888279420914016176199869304414962724377} a^{3} + \frac{6069626963141663043345925236275225827090392119547586049}{38712935094380147888856811627053482957887858127103301283} a^{2} - \frac{344050787759981286957287484236962216021329277447657456586}{735545766793222809888279420914016176199869304414962724377} a - \frac{196237375743457577073322715227244403817817110713254946282}{735545766793222809888279420914016176199869304414962724377}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1839406559.04 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1699 | Data not computed | ||||||