Normalized defining polynomial
\( x^{20} - 8 x^{19} + 20 x^{18} + 43 x^{17} - 637 x^{16} + 1823 x^{15} - 611 x^{14} + 11122 x^{13} - 21862 x^{12} - 436971 x^{11} + 1581758 x^{10} + 1374098 x^{9} - 13942971 x^{8} + 12201676 x^{7} + 41873506 x^{6} - 80519029 x^{5} - 23286812 x^{4} + 149491890 x^{3} - 68689262 x^{2} - 69482714 x + 49341221 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3197619919037143226174828028564453125=5^{13}\cdot 419^{6}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{19} - \frac{206679000131835446366985022604861214717270707692984962507907560252526674}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{18} + \frac{1017756908350235353614699894555342218342227897782511091482856528904172389}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{17} + \frac{474265929473174298993951689239975038271331603714565776489746719716259403}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{16} - \frac{391281147818093497739181104688108213289706863211079676592418666140260446}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{15} + \frac{142742136053591189750860496909897203214595626818777817340293935339510497}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{14} - \frac{1062762132672525041719976620897963495504597882757178915959011028402460271}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{13} - \frac{43289099953234666344773456297248691638688164796261408412667648105996098}{201791910754433073613744824411686984222632169033231170888330579240077263} a^{12} + \frac{849421325958458002322423590104585239928771784057804902603045153067251808}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{11} + \frac{685440884808269967076038756139700006895876496268504004342451557230455374}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{10} + \frac{65589148114503103913962626649763030864460255240609515959955242499056805}{201791910754433073613744824411686984222632169033231170888330579240077263} a^{9} + \frac{73139858079355428443347573858042973542406125214296362314440259059003135}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{8} + \frac{361592816721875441795574580337847584296170414212929026101040732184298424}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{7} - \frac{286502480250482298019230274021559326643973441101808212864960861511117613}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{6} - \frac{156300541378344254804809315097949765146377487199423808158419898277177649}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{5} - \frac{42986196377432675086591932094126481334917974981058272233558193529142280}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{4} + \frac{339276881797720827307732507066416574737377007553286446097700260606226442}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{3} - \frac{20003481713036414452662004162481269744545945716793641843969630260339877}{2623294839807629956978682717351930794894218197432005221548297530121004419} a^{2} + \frac{878427652862938260039393574579510042069079848952723059363236006650408049}{2623294839807629956978682717351930794894218197432005221548297530121004419} a + \frac{824777172692325461431896883524864111467615176714528813705363280699286019}{2623294839807629956978682717351930794894218197432005221548297530121004419}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114811582105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||