Properties

Label 20.12.3143662735...3241.2
Degree $20$
Signature $[12, 4]$
Discriminant $3^{4}\cdot 19^{2}\cdot 401^{10}$
Root discriminant $33.49$
Ramified primes $3, 19, 401$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T347

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![83, 200, 219, -1085, -5107, -2743, 8479, 9772, -2906, -10493, -3352, 5370, 3507, -1384, -1366, 171, 267, -8, -26, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 26*x^18 - 8*x^17 + 267*x^16 + 171*x^15 - 1366*x^14 - 1384*x^13 + 3507*x^12 + 5370*x^11 - 3352*x^10 - 10493*x^9 - 2906*x^8 + 9772*x^7 + 8479*x^6 - 2743*x^5 - 5107*x^4 - 1085*x^3 + 219*x^2 + 200*x + 83)
 
gp: K = bnfinit(x^20 - 26*x^18 - 8*x^17 + 267*x^16 + 171*x^15 - 1366*x^14 - 1384*x^13 + 3507*x^12 + 5370*x^11 - 3352*x^10 - 10493*x^9 - 2906*x^8 + 9772*x^7 + 8479*x^6 - 2743*x^5 - 5107*x^4 - 1085*x^3 + 219*x^2 + 200*x + 83, 1)
 

Normalized defining polynomial

\( x^{20} - 26 x^{18} - 8 x^{17} + 267 x^{16} + 171 x^{15} - 1366 x^{14} - 1384 x^{13} + 3507 x^{12} + 5370 x^{11} - 3352 x^{10} - 10493 x^{9} - 2906 x^{8} + 9772 x^{7} + 8479 x^{6} - 2743 x^{5} - 5107 x^{4} - 1085 x^{3} + 219 x^{2} + 200 x + 83 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3143662735061279800077532193241=3^{4}\cdot 19^{2}\cdot 401^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 19, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{15} + \frac{1}{3} a^{14} - \frac{1}{9} a^{13} + \frac{2}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{3} a^{5} - \frac{2}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{730316498002048093011423111} a^{19} - \frac{11671278106863394560350065}{243438832667349364337141037} a^{18} - \frac{25560626907651141168364685}{243438832667349364337141037} a^{17} + \frac{17848269477046743307802773}{730316498002048093011423111} a^{16} + \frac{30580512241295765539865465}{243438832667349364337141037} a^{15} + \frac{237478681709174169788051921}{730316498002048093011423111} a^{14} + \frac{197337962529002509988639225}{730316498002048093011423111} a^{13} + \frac{75438333121907270234950636}{243438832667349364337141037} a^{12} + \frac{179011592938022090246683120}{730316498002048093011423111} a^{11} + \frac{41191319791916013671898622}{243438832667349364337141037} a^{10} - \frac{118378596043008708494446094}{730316498002048093011423111} a^{9} - \frac{151689617191766513678686523}{730316498002048093011423111} a^{8} + \frac{35789581183574742348541619}{243438832667349364337141037} a^{7} + \frac{15968620880474148430904670}{81146277555783121445713679} a^{6} - \frac{227865429663374732832686705}{730316498002048093011423111} a^{5} - \frac{75248896646646758848088701}{730316498002048093011423111} a^{4} - \frac{17226539337623411470117040}{730316498002048093011423111} a^{3} + \frac{80469871479742569444707150}{730316498002048093011423111} a^{2} - \frac{324227938798892323530878779}{730316498002048093011423111} a + \frac{55667326428980660746769042}{243438832667349364337141037}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 112912758.938 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T347:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 104 conjugacy class representatives for t20n347 are not computed
Character table for t20n347 is not computed

Intermediate fields

\(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
401Data not computed