Properties

Label 20.12.2931242601...0625.1
Degree $20$
Signature $[12, 4]$
Discriminant $5^{14}\cdot 6029^{6}$
Root discriminant $42.01$
Ramified primes $5, 6029$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T288

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5041, 0, -18614, 0, 17047, 0, -4038, 0, 2451, 0, -1568, 0, 216, 0, -58, 0, 57, 0, -14, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 14*x^18 + 57*x^16 - 58*x^14 + 216*x^12 - 1568*x^10 + 2451*x^8 - 4038*x^6 + 17047*x^4 - 18614*x^2 + 5041)
 
gp: K = bnfinit(x^20 - 14*x^18 + 57*x^16 - 58*x^14 + 216*x^12 - 1568*x^10 + 2451*x^8 - 4038*x^6 + 17047*x^4 - 18614*x^2 + 5041, 1)
 

Normalized defining polynomial

\( x^{20} - 14 x^{18} + 57 x^{16} - 58 x^{14} + 216 x^{12} - 1568 x^{10} + 2451 x^{8} - 4038 x^{6} + 17047 x^{4} - 18614 x^{2} + 5041 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(293124260151066505049566650390625=5^{14}\cdot 6029^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 6029$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{211273025012216} a^{18} + \frac{6687785139781}{211273025012216} a^{16} - \frac{4947991639493}{52818256253054} a^{14} - \frac{1}{8} a^{13} - \frac{5154164159301}{211273025012216} a^{12} - \frac{19787908887735}{211273025012216} a^{10} + \frac{1}{8} a^{9} + \frac{47314656049207}{211273025012216} a^{8} - \frac{1}{8} a^{7} + \frac{2516497284843}{26409128126527} a^{6} + \frac{39988688175343}{105636512506108} a^{4} + \frac{1}{4} a^{3} + \frac{21614274510737}{52818256253054} a^{2} - \frac{3}{8} a + \frac{11591970746597}{52818256253054}$, $\frac{1}{15000384775867336} a^{19} - \frac{415858264884651}{15000384775867336} a^{17} + \frac{217890186580771}{15000384775867336} a^{15} + \frac{697264813273315}{7500192387933668} a^{13} + \frac{346629275264247}{7500192387933668} a^{11} - \frac{1}{8} a^{10} - \frac{1325960006530197}{15000384775867336} a^{9} + \frac{1}{8} a^{8} - \frac{3228190781284077}{15000384775867336} a^{7} - \frac{19619348102119}{3750096193966834} a^{5} + \frac{3}{8} a^{4} - \frac{3901321249062629}{15000384775867336} a^{3} + \frac{1}{8} a^{2} - \frac{4839320820421107}{15000384775867336} a + \frac{1}{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1778623504.38 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T288:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3840
The 36 conjugacy class representatives for t20n288
Character table for t20n288 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1, 10.6.3424174412328125.1, 10.6.17120872061640625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.6.5.1$x^{6} - 5$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
5.6.5.1$x^{6} - 5$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
6029Data not computed