Properties

Label 20.12.2821193160...1264.1
Degree $20$
Signature $[12, 4]$
Discriminant $2^{40}\cdot 11^{16}\cdot 89^{5}$
Root discriminant $83.66$
Ramified primes $2, 11, 89$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T310

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![47081, 0, 92186, 0, -170005, 0, -104756, 0, 166327, 0, -34808, 0, -6339, 0, 2320, 0, -110, 0, -14, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 14*x^18 - 110*x^16 + 2320*x^14 - 6339*x^12 - 34808*x^10 + 166327*x^8 - 104756*x^6 - 170005*x^4 + 92186*x^2 + 47081)
 
gp: K = bnfinit(x^20 - 14*x^18 - 110*x^16 + 2320*x^14 - 6339*x^12 - 34808*x^10 + 166327*x^8 - 104756*x^6 - 170005*x^4 + 92186*x^2 + 47081, 1)
 

Normalized defining polynomial

\( x^{20} - 14 x^{18} - 110 x^{16} + 2320 x^{14} - 6339 x^{12} - 34808 x^{10} + 166327 x^{8} - 104756 x^{6} - 170005 x^{4} + 92186 x^{2} + 47081 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(282119316059236304095781411736743051264=2^{40}\cdot 11^{16}\cdot 89^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $83.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{111634074918917146850824813} a^{18} - \frac{43864224359092496236916869}{111634074918917146850824813} a^{16} - \frac{45036070453356568719292935}{111634074918917146850824813} a^{14} - \frac{52927210456553354898562477}{111634074918917146850824813} a^{12} - \frac{54568077293251666781935211}{111634074918917146850824813} a^{10} + \frac{32589714992339350916447837}{111634074918917146850824813} a^{8} + \frac{31574889023842322160938784}{111634074918917146850824813} a^{6} + \frac{28321453084293978542802335}{111634074918917146850824813} a^{4} + \frac{47210480141754142515034300}{111634074918917146850824813} a^{2} - \frac{46480417105639784649022569}{111634074918917146850824813}$, $\frac{1}{2567583723135094377568970699} a^{19} + \frac{1184110599748996119122156074}{2567583723135094377568970699} a^{17} + \frac{959670603816897752938130382}{2567583723135094377568970699} a^{15} + \frac{281975014300198085653911962}{2567583723135094377568970699} a^{13} - \frac{277836227131085960483584837}{2567583723135094377568970699} a^{11} + \frac{479126014668007938319747089}{2567583723135094377568970699} a^{9} - \frac{414961410651826265242360468}{2567583723135094377568970699} a^{7} - \frac{641482996429208902562146543}{2567583723135094377568970699} a^{5} - \frac{287691744614997298037440139}{2567583723135094377568970699} a^{3} + \frac{734958107326780243306751122}{2567583723135094377568970699} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 466270177395 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T310:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 44 conjugacy class representatives for t20n310
Character table for t20n310 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.1738687177114624.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
89Data not computed