Normalized defining polynomial
\( x^{20} - 4 x^{19} - 30 x^{18} + 182 x^{17} - 202 x^{16} - 1326 x^{15} + 10399 x^{14} - 28727 x^{13} - 6538 x^{12} + 251568 x^{11} - 889350 x^{10} + 1520072 x^{9} + 414154 x^{8} - 8323211 x^{7} + 23192597 x^{6} - 39663666 x^{5} + 40839719 x^{4} - 21427354 x^{3} - 6622819 x^{2} + 27086759 x - 14942897 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2792809998923504933891232182912929=61^{10}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{19} + \frac{315160169611703231789672312446435839887291592294323734899737836077290}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{18} - \frac{886318779494178832168310365959865371711739751819048529146549066900223}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{17} + \frac{1337740038861438596758449043981323920224667049936951151331234406105262}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{16} - \frac{1285930548783230695560979944592006027564247153740057324171734318089362}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{15} - \frac{1333681914335460339736936828617897929534714438543742304016606701717907}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{14} + \frac{856870360256971131853122184741286526538844143463227788089673801678347}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{13} - \frac{45717646757045813080179622135485153632250353182702070621669586210965}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{12} - \frac{207550242568862948365157187896907959740582642597843519218778420947569}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{11} + \frac{562682775214710110474420831407650131818240243787836348252872430299086}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{10} + \frac{940663442494701689935431523641386909521096598756004009303804350581007}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{9} + \frac{410123521340135149029722815639963218036901094831752120615994648543644}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{8} + \frac{460917078134658502315074209861470175493863753898337204753173022062141}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{7} + \frac{745321663429673347778328457433060065782673157192346198951348915958909}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{6} + \frac{1135572062793670280346395576357492054057459992001132592158326411843085}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{5} + \frac{891059481049989334700150763177365406782711369465278240030978195195957}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{4} - \frac{1287445854268433056899955285202262567566608994440804679194835697490996}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{3} + \frac{972373495973916647002042640696542918580000915723990116577693322696753}{3115704602483385516646728059604312876533698974869387022805508431776949} a^{2} - \frac{627960292649622996424560905535128734979825609380959006302337080971332}{3115704602483385516646728059604312876533698974869387022805508431776949} a - \frac{1050922500114345177666056551044038796376212976444375172820112320804045}{3115704602483385516646728059604312876533698974869387022805508431776949}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3289013792.28 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.52847043426510673.1, 10.6.35774248429.1, 10.6.866344974205093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 397 | Data not computed | ||||||