Normalized defining polynomial
\( x^{20} - 13 x^{18} - 378 x^{16} + 3608 x^{14} + 27898 x^{12} - 146505 x^{10} - 235376 x^{8} + 1383668 x^{6} - 36982 x^{4} - 3652813 x^{2} + 2825761 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2776853807987152620436695040000000000=2^{20}\cdot 5^{10}\cdot 11^{2}\cdot 41^{4}\cdot 28162171^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 41, 28162171$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{41} a^{14} - \frac{13}{41} a^{12} - \frac{9}{41} a^{10} + \frac{18}{41} a^{6} - \frac{12}{41} a^{4} + \frac{5}{41} a^{2}$, $\frac{1}{41} a^{15} - \frac{13}{41} a^{13} - \frac{9}{41} a^{11} + \frac{18}{41} a^{7} - \frac{12}{41} a^{5} + \frac{5}{41} a^{3}$, $\frac{1}{1681} a^{16} - \frac{13}{1681} a^{14} - \frac{378}{1681} a^{12} + \frac{6}{41} a^{10} - \frac{679}{1681} a^{8} - \frac{258}{1681} a^{6} - \frac{36}{1681} a^{4} + \frac{5}{41} a^{2}$, $\frac{1}{1681} a^{17} - \frac{13}{1681} a^{15} - \frac{378}{1681} a^{13} + \frac{6}{41} a^{11} - \frac{679}{1681} a^{9} - \frac{258}{1681} a^{7} - \frac{36}{1681} a^{5} + \frac{5}{41} a^{3}$, $\frac{1}{22907347082574486283304534119} a^{18} + \frac{3802823569806734634421334}{22907347082574486283304534119} a^{16} - \frac{9718741493974677140392373}{22907347082574486283304534119} a^{14} - \frac{175011334067623806760461687}{558715782501816738617183759} a^{12} - \frac{4575673842423781144442430017}{22907347082574486283304534119} a^{10} - \frac{1833011378892091970591003719}{22907347082574486283304534119} a^{8} + \frac{779884409797765881696606423}{22907347082574486283304534119} a^{6} - \frac{30411452787983456063305822}{558715782501816738617183759} a^{4} + \frac{6676918146309221194019428}{13627214207361383868711799} a^{2} + \frac{80279515782690539792916}{332371078228326435822239}$, $\frac{1}{22907347082574486283304534119} a^{19} + \frac{3802823569806734634421334}{22907347082574486283304534119} a^{17} - \frac{9718741493974677140392373}{22907347082574486283304534119} a^{15} - \frac{175011334067623806760461687}{558715782501816738617183759} a^{13} - \frac{4575673842423781144442430017}{22907347082574486283304534119} a^{11} - \frac{1833011378892091970591003719}{22907347082574486283304534119} a^{9} + \frac{779884409797765881696606423}{22907347082574486283304534119} a^{7} - \frac{30411452787983456063305822}{558715782501816738617183759} a^{5} + \frac{6676918146309221194019428}{13627214207361383868711799} a^{3} + \frac{80279515782690539792916}{332371078228326435822239} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73289635003.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.968074628125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.3.0.1 | $x^{3} - x + 13$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 41.3.0.1 | $x^{3} - x + 13$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 28162171 | Data not computed | ||||||