Normalized defining polynomial
\( x^{20} - x^{19} - 18 x^{18} + 75 x^{17} + 52 x^{16} - 901 x^{15} + 222 x^{14} + 3752 x^{13} + 4353 x^{12} - 20619 x^{11} - 8024 x^{10} + 51009 x^{9} - 16352 x^{8} - 41697 x^{7} + 35277 x^{6} + 1386 x^{5} - 13758 x^{4} + 5625 x^{3} + 567 x^{2} - 729 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2732752603641936486518096923828125=3^{6}\cdot 5^{17}\cdot 23^{8}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{17} + \frac{1}{3} a^{15} - \frac{2}{9} a^{14} - \frac{1}{9} a^{13} - \frac{1}{3} a^{12} - \frac{1}{9} a^{11} - \frac{1}{3} a^{10} + \frac{4}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{4769048145996860946212336189984148776607} a^{19} + \frac{195610369790642949072230816677082682470}{4769048145996860946212336189984148776607} a^{18} + \frac{255312811182145673780679329085262611355}{1589682715332286982070778729994716258869} a^{17} + \frac{81487946665465523523364616965481600890}{1589682715332286982070778729994716258869} a^{16} + \frac{1378691340163280324696593420384471001872}{4769048145996860946212336189984148776607} a^{15} + \frac{2031668594462495289739187781868341856406}{4769048145996860946212336189984148776607} a^{14} + \frac{132195969997874589781500434620636639541}{529894238444095660690259576664905419623} a^{13} - \frac{490750479434061378576370460304649632124}{4769048145996860946212336189984148776607} a^{12} - \frac{68247707834881770998790886407396521080}{529894238444095660690259576664905419623} a^{11} - \frac{29297342522949815633615710820554515113}{529894238444095660690259576664905419623} a^{10} + \frac{2342801446421897915949720092240296241689}{4769048145996860946212336189984148776607} a^{9} - \frac{154401754451719447541935301311155760067}{1589682715332286982070778729994716258869} a^{8} - \frac{2048140608475558311138146782341562046675}{4769048145996860946212336189984148776607} a^{7} + \frac{771267931519765514624873155693578252782}{1589682715332286982070778729994716258869} a^{6} + \frac{431509157948467659388882775090303631824}{1589682715332286982070778729994716258869} a^{5} + \frac{75523590970237462577959414633486161106}{529894238444095660690259576664905419623} a^{4} - \frac{146086742872637016656341527211127308304}{1589682715332286982070778729994716258869} a^{3} - \frac{47534308035766564751317777659873273095}{176631412814698553563419858888301806541} a^{2} + \frac{69339069654152031284837066044221038376}{176631412814698553563419858888301806541} a - \frac{9208001694316778522582286531709258552}{176631412814698553563419858888301806541}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5473377463.56 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.767625.1, 10.6.1558561331953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |