Normalized defining polynomial
\( x^{20} - 6 x^{19} - 23 x^{18} + 198 x^{17} + 82 x^{16} - 2588 x^{15} + 2075 x^{14} + 17320 x^{13} - 27089 x^{12} - 63410 x^{11} + 145925 x^{10} + 127220 x^{9} - 413721 x^{8} - 152650 x^{7} + 603232 x^{6} + 171608 x^{5} - 351031 x^{4} - 119520 x^{3} + 68688 x^{2} + 25872 x + 968 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2729663703817172900595808790904832=2^{34}\cdot 7^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{12959236999397683492782133631770074387441052} a^{19} - \frac{44934841608264510626367053331016200460241}{3239809249849420873195533407942518596860263} a^{18} - \frac{1177905205887638345055222542831587490858515}{12959236999397683492782133631770074387441052} a^{17} - \frac{129712731210857111007956316921848233554293}{294528113622674624835957582540228963350933} a^{16} - \frac{2754600588227484477708247202829077218001151}{6479618499698841746391066815885037193720526} a^{15} + \frac{862444503528529711618592260983712250436381}{3239809249849420873195533407942518596860263} a^{14} - \frac{4551701766023123023799620872900290957796401}{12959236999397683492782133631770074387441052} a^{13} + \frac{65901707312629217680990047758830185371981}{6479618499698841746391066815885037193720526} a^{12} - \frac{5807115615743629389728287486697777661439161}{12959236999397683492782133631770074387441052} a^{11} - \frac{764377690913968233464106947168496839644980}{3239809249849420873195533407942518596860263} a^{10} - \frac{3397539565083307737527272360728012626590607}{12959236999397683492782133631770074387441052} a^{9} + \frac{152893501237876333565788686977467569846447}{6479618499698841746391066815885037193720526} a^{8} - \frac{33822829866540032869792400685134621450587}{1178112454490698499343830330160915853403732} a^{7} - \frac{900457617130024856679073210202692085256825}{3239809249849420873195533407942518596860263} a^{6} + \frac{916968063505449425316844650431073862408411}{3239809249849420873195533407942518596860263} a^{5} - \frac{810045027878723075788745071394718929645538}{3239809249849420873195533407942518596860263} a^{4} - \frac{1749488667411688196679592060347944581621647}{12959236999397683492782133631770074387441052} a^{3} + \frac{701270132540886346584334707851966708375645}{6479618499698841746391066815885037193720526} a^{2} - \frac{669568248369959764730698288256119729023828}{3239809249849420873195533407942518596860263} a + \frac{104666316871948902448562519607146553010185}{294528113622674624835957582540228963350933}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6091540254.17 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40960 |
| The 124 conjugacy class representatives for t20n633 are not computed |
| Character table for t20n633 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.6889792.1, 10.10.379753870426112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||