Normalized defining polynomial
\( x^{20} - 2 x^{19} - 18 x^{18} + 43 x^{17} + 165 x^{16} - 289 x^{15} - 1200 x^{14} + 752 x^{13} + 5503 x^{12} - 80 x^{11} - 13888 x^{10} - 4107 x^{9} + 20683 x^{8} + 10594 x^{7} - 20943 x^{6} - 11019 x^{5} + 14058 x^{4} + 3795 x^{3} - 4379 x^{2} + 301 x + 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(270294613348055239187250247211813=19^{8}\cdot 293^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{28} a^{16} - \frac{3}{28} a^{15} + \frac{9}{28} a^{14} - \frac{3}{14} a^{13} - \frac{3}{28} a^{12} - \frac{9}{28} a^{11} - \frac{13}{28} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{5}{14} a^{7} - \frac{11}{28} a^{6} - \frac{1}{7} a^{5} - \frac{1}{28} a^{4} + \frac{11}{28} a^{3} + \frac{3}{14} a^{2} + \frac{2}{7} a + \frac{1}{4}$, $\frac{1}{28} a^{17} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{5}{14} a^{12} - \frac{3}{7} a^{11} + \frac{1}{28} a^{10} - \frac{2}{7} a^{9} - \frac{1}{14} a^{8} - \frac{13}{28} a^{7} - \frac{9}{28} a^{6} - \frac{13}{28} a^{5} + \frac{2}{7} a^{4} + \frac{11}{28} a^{3} - \frac{1}{14} a^{2} + \frac{3}{28} a - \frac{1}{4}$, $\frac{1}{28} a^{18} + \frac{1}{4} a^{14} - \frac{11}{28} a^{13} - \frac{5}{28} a^{12} + \frac{1}{28} a^{11} + \frac{13}{28} a^{10} - \frac{1}{14} a^{9} - \frac{13}{28} a^{8} - \frac{9}{28} a^{7} + \frac{1}{28} a^{6} + \frac{1}{28} a^{5} - \frac{5}{14} a^{4} + \frac{3}{7} a^{3} + \frac{5}{14} a^{2} - \frac{1}{4}$, $\frac{1}{3185463471985520716778950924600804} a^{19} - \frac{2684454482306616253713780264609}{1592731735992760358389475462300402} a^{18} - \frac{3168186815938379278291243121685}{1592731735992760358389475462300402} a^{17} - \frac{3799997356401925951604959916159}{455066210283645816682707274942972} a^{16} + \frac{2673088565383183903018187246411}{227533105141822908341353637471486} a^{15} - \frac{208018755237307015374650988603103}{796365867996380179194737731150201} a^{14} + \frac{1316146348430108090831234374206093}{3185463471985520716778950924600804} a^{13} + \frac{440655451257072085496631334834119}{1592731735992760358389475462300402} a^{12} - \frac{233555372175738464260103920362279}{796365867996380179194737731150201} a^{11} - \frac{331420181687140869177392614905293}{3185463471985520716778950924600804} a^{10} - \frac{185286244533595452554845850141791}{455066210283645816682707274942972} a^{9} - \frac{24665100900730747877122319880231}{3185463471985520716778950924600804} a^{8} + \frac{476962157664515785503082777002855}{3185463471985520716778950924600804} a^{7} - \frac{40109893914860588467067470543215}{113766552570911454170676818735743} a^{6} - \frac{62836208195400489459698503837211}{1592731735992760358389475462300402} a^{5} + \frac{678530551483341199341968312125689}{3185463471985520716778950924600804} a^{4} + \frac{1161918680860951889285667294995053}{3185463471985520716778950924600804} a^{3} - \frac{138325770717958280089583583464007}{1592731735992760358389475462300402} a^{2} - \frac{936497438302402611137726381040345}{3185463471985520716778950924600804} a - \frac{164810290249913401979673854578841}{455066210283645816682707274942972}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1199535516.16 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 104 conjugacy class representatives for t20n693 are not computed |
| Character table for t20n693 is not computed |
Intermediate fields
| 10.10.960472390437121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 293 | Data not computed | ||||||