Normalized defining polynomial
\( x^{20} - 15 x^{18} + 80 x^{16} - 20 x^{15} - 225 x^{14} + 255 x^{13} + 575 x^{12} - 1405 x^{11} - 1299 x^{10} + 3810 x^{9} + 865 x^{8} - 4310 x^{7} + 1155 x^{6} + 990 x^{5} - 475 x^{4} - 120 x^{3} + 75 x^{2} + 15 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26623100852415561676025390625=3^{4}\cdot 5^{22}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{1131} a^{18} + \frac{21}{377} a^{17} + \frac{40}{1131} a^{16} - \frac{11}{87} a^{15} + \frac{391}{1131} a^{14} + \frac{114}{377} a^{13} + \frac{2}{29} a^{12} + \frac{407}{1131} a^{11} - \frac{32}{377} a^{10} - \frac{86}{1131} a^{9} - \frac{433}{1131} a^{8} + \frac{75}{377} a^{7} + \frac{484}{1131} a^{6} - \frac{563}{1131} a^{5} + \frac{14}{377} a^{4} + \frac{20}{87} a^{3} + \frac{55}{1131} a^{2} - \frac{55}{377} a - \frac{48}{377}$, $\frac{1}{537285005698656571629} a^{19} - \frac{158220925663597460}{537285005698656571629} a^{18} + \frac{4966798439795962820}{76755000814093795947} a^{17} + \frac{1542660246097567485}{25585000271364598649} a^{16} + \frac{58502410670911664752}{179095001899552190543} a^{15} + \frac{44081640665303574612}{179095001899552190543} a^{14} + \frac{114335243745224110262}{537285005698656571629} a^{13} - \frac{27128356971655734317}{179095001899552190543} a^{12} - \frac{2224769671142761069}{76755000814093795947} a^{11} + \frac{5619100868274393035}{13776538607657860811} a^{10} - \frac{121079562419341890142}{537285005698656571629} a^{9} - \frac{278701315247839305}{1968076943951122973} a^{8} + \frac{139817433975035591548}{537285005698656571629} a^{7} + \frac{211096884347044768708}{537285005698656571629} a^{6} + \frac{148964070851357815598}{537285005698656571629} a^{5} - \frac{254244920401444278017}{537285005698656571629} a^{4} + \frac{89554182291776740177}{537285005698656571629} a^{3} - \frac{72823540150464530676}{179095001899552190543} a^{2} - \frac{12585336782935668061}{25585000271364598649} a - \frac{260776637210251423379}{537285005698656571629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12133358.0731 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2:C_2$ (as 20T96):
| A solvable group of order 400 |
| The 16 conjugacy class representatives for $D_5\wr C_2:C_2$ |
| Character table for $D_5\wr C_2:C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{5}, \sqrt{13})\), 10.6.32633173828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |