Normalized defining polynomial
\( x^{20} - 253 x^{18} + 28290 x^{16} - 6 x^{15} - 1840209 x^{14} - 679 x^{13} + 77072033 x^{12} + 129241 x^{11} - 2170492588 x^{10} - 5916096 x^{9} + 41603791746 x^{8} + 94277553 x^{7} - 535688310011 x^{6} + 140062232 x^{5} + 4431198685244 x^{4} - 16737690057 x^{3} - 21240654931404 x^{2} + 108814306471 x + 44742407803561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2650043292770687765039331210445682119140625=5^{10}\cdot 97^{10}\cdot 60662149^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 60662149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13} a^{15} - \frac{3}{13} a^{14} + \frac{1}{13} a^{13} + \frac{5}{13} a^{12} + \frac{6}{13} a^{11} + \frac{4}{13} a^{10} + \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{4}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} - \frac{1}{13} a$, $\frac{1}{13} a^{16} + \frac{5}{13} a^{14} - \frac{5}{13} a^{13} - \frac{5}{13} a^{12} - \frac{4}{13} a^{11} + \frac{5}{13} a^{10} + \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{4}{13} a^{7} - \frac{5}{13} a^{6} + \frac{2}{13} a^{5} - \frac{5}{13} a^{4} - \frac{6}{13} a^{3} - \frac{4}{13} a^{2} - \frac{3}{13} a$, $\frac{1}{13} a^{17} - \frac{3}{13} a^{14} + \frac{3}{13} a^{13} - \frac{3}{13} a^{12} + \frac{1}{13} a^{11} - \frac{1}{13} a^{10} - \frac{3}{13} a^{9} + \frac{4}{13} a^{8} + \frac{5}{13} a^{7} + \frac{5}{13} a^{6} - \frac{2}{13} a^{5} + \frac{1}{13} a^{4} + \frac{2}{13} a^{2} + \frac{5}{13} a$, $\frac{1}{338} a^{18} + \frac{5}{338} a^{17} + \frac{11}{338} a^{16} + \frac{1}{169} a^{15} + \frac{15}{338} a^{14} + \frac{1}{338} a^{13} - \frac{57}{338} a^{12} + \frac{159}{338} a^{11} + \frac{41}{338} a^{10} - \frac{45}{338} a^{9} - \frac{77}{169} a^{8} + \frac{93}{338} a^{7} - \frac{35}{338} a^{6} - \frac{159}{338} a^{5} - \frac{109}{338} a^{4} + \frac{83}{169} a^{3} + \frac{83}{338} a^{2} - \frac{1}{2}$, $\frac{1}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{19} + \frac{16656700381534912403151504385946515672569465649417889483153894450959190861141914141}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{18} + \frac{423299995953519917802610013097782631206761397532084232862516027316536836828830287093}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{17} + \frac{207033989460912173340497523592867287234182196618362720107896807824575176465442422240}{9498671557028793599566936162010024905301880435895000693921541657417089863433524134329} a^{16} - \frac{261604693816216780882810042215204342372027216896937392612509080939902522148917474785}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{15} - \frac{791478091724803936083068609017964408024566203960330638059405789171520178348343259021}{2713906159151083885590553189145721401514822981684285912549011902119168532409578324094} a^{14} + \frac{519220695367394317496040852500977815265517233277474316946323937788536098339967602921}{2713906159151083885590553189145721401514822981684285912549011902119168532409578324094} a^{13} - \frac{1170992656543014312570873001173822929603287371633266214754577852935159430079954747505}{2713906159151083885590553189145721401514822981684285912549011902119168532409578324094} a^{12} - \frac{1079238677020289720714478044681701181081260008218913253212253740412086518112741538399}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{11} - \frac{4880864415753628387260105680122647868514986915117329945128946972962867649631177282433}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{10} + \frac{220576048234232719004342037779102096496450477509942014192330685874171510669568860607}{730667042848368738428225858616155761946298495068846207224733973647468451033348010333} a^{9} + \frac{790627026695637746989974379335301853621284056808959765403092573070988611799907279359}{2713906159151083885590553189145721401514822981684285912549011902119168532409578324094} a^{8} + \frac{5965433853034228796747684686097564382512436992152233474829010767712236920590689033639}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{7} - \frac{8744760424123981544466362227105744430383040467675571020235460199705957052312234939511}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{6} + \frac{833224288486936067080291517591126332296164907069263615260866936477101308908808015935}{2713906159151083885590553189145721401514822981684285912549011902119168532409578324094} a^{5} - \frac{547465798471441962190894930644629700867866721549120148338005090779556530333096109819}{9498671557028793599566936162010024905301880435895000693921541657417089863433524134329} a^{4} - \frac{2622440737830505346799320625574054825773146822133991463688700036373241715476619033171}{18997343114057587199133872324020049810603760871790001387843083314834179726867048268658} a^{3} - \frac{4249231965516333409549517585320224096227705955242022556872045943009775112052678122259}{9498671557028793599566936162010024905301880435895000693921541657417089863433524134329} a^{2} + \frac{495707930533519962573637420089851201878429240969309928609799522900316121985394261269}{1461334085696737476856451717232311523892596990137692414449467947294936902066696020666} a + \frac{4381147522021944318122611056073686516091992918819749117764317642738446989510801515}{56205157142182210648325066047396597072792191928372785171133382588266803925642154641}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140481468190000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 70 conjugacy class representatives for t20n656 are not computed |
| Character table for t20n656 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{485}) \), \(\Q(\sqrt{5}, \sqrt{97})\), 10.6.189569215625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||
| 60662149 | Data not computed | ||||||