Normalized defining polynomial
\( x^{20} - 48 x^{18} - 5 x^{17} + 915 x^{16} + 321 x^{15} - 9014 x^{14} - 7203 x^{13} + 46824 x^{12} + 76549 x^{11} - 80433 x^{10} - 370464 x^{9} - 363310 x^{8} + 417663 x^{7} + 1413879 x^{6} + 1393320 x^{5} + 476223 x^{4} - 113787 x^{3} - 111392 x^{2} - 15933 x + 1413 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(263753711457637140403796576059662753=3^{34}\cdot 7^{7}\cdot 79^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} - \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{5}{12} a^{7} - \frac{1}{2} a^{6} + \frac{1}{12} a^{5} - \frac{1}{12} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{17} - \frac{1}{4} a^{12} - \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{5}{12} a^{8} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{36} a^{18} - \frac{1}{36} a^{17} - \frac{1}{36} a^{16} + \frac{1}{36} a^{15} + \frac{1}{36} a^{14} - \frac{1}{36} a^{12} - \frac{2}{9} a^{11} + \frac{1}{9} a^{10} + \frac{13}{36} a^{9} + \frac{1}{12} a^{8} - \frac{17}{36} a^{7} - \frac{7}{18} a^{6} - \frac{1}{3} a^{5} + \frac{1}{36} a^{4} + \frac{17}{36} a^{3} - \frac{1}{36} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{192746135823734877426508564432874754223956} a^{19} - \frac{487734544423934471646038085786182487995}{64248711941244959142169521477624918074652} a^{18} - \frac{2444576543291072187204300508428158151649}{96373067911867438713254282216437377111978} a^{17} + \frac{1492235911181405711115937907737689764129}{64248711941244959142169521477624918074652} a^{16} - \frac{5576018574846236570608062703103468408101}{192746135823734877426508564432874754223956} a^{15} - \frac{1205704835923017894680911674056940664178}{48186533955933719356627141108218688555989} a^{14} + \frac{11438683631323818466473477860006725297841}{192746135823734877426508564432874754223956} a^{13} - \frac{12366776415190620943321882914789565378987}{64248711941244959142169521477624918074652} a^{12} - \frac{3638992863456380943223131637587977351197}{192746135823734877426508564432874754223956} a^{11} - \frac{727886721084032306489694653683027879231}{48186533955933719356627141108218688555989} a^{10} - \frac{49915536204381434078756702117134338504143}{192746135823734877426508564432874754223956} a^{9} + \frac{23496350109064736561755689619194951001087}{48186533955933719356627141108218688555989} a^{8} + \frac{16794102882297875956785823506469964069246}{48186533955933719356627141108218688555989} a^{7} - \frac{13532659239851692141823442055689416580679}{96373067911867438713254282216437377111978} a^{6} + \frac{34456832343581403638840120144831320907525}{96373067911867438713254282216437377111978} a^{5} - \frac{10377059017214955861712197739323452172811}{21416237313748319714056507159208306024884} a^{4} - \frac{6126838292007868755832867830518235632771}{48186533955933719356627141108218688555989} a^{3} + \frac{4829354417935787775179615899166147974085}{48186533955933719356627141108218688555989} a^{2} + \frac{8722397872827880672701006900539303768297}{32124355970622479571084760738812459037326} a - \frac{1466609695355597430821884606654893293791}{21416237313748319714056507159208306024884}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81593791285.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n285 |
| Character table for t20n285 is not computed |
Intermediate fields
| 10.10.7279733310365817.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.11.2 | $x^{6} + 15$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |