Normalized defining polynomial
\( x^{20} - 2 x^{19} - 3 x^{17} - 85 x^{16} + 194 x^{15} - 115 x^{14} + 649 x^{13} + 473 x^{12} - 2676 x^{11} - 136 x^{10} - 633 x^{9} + 736 x^{8} + 4356 x^{7} + 1398 x^{6} + 155 x^{5} - 3806 x^{4} - 3113 x^{3} + 1705 x^{2} + 902 x - 253 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259115574359426403570636425521=11^{16}\cdot 23^{4}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} + \frac{3}{11} a^{17} - \frac{5}{11} a^{16} + \frac{4}{11} a^{14} + \frac{5}{11} a^{13} - \frac{5}{11} a^{12} - \frac{4}{11} a^{11} + \frac{3}{11} a^{10} + \frac{4}{11} a^{9} + \frac{2}{11} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5}$, $\frac{1}{40763991812368886036169936173653633709} a^{19} - \frac{1371245185253143048930870504043042292}{40763991812368886036169936173653633709} a^{18} - \frac{15000806054897896043639340418100944606}{40763991812368886036169936173653633709} a^{17} + \frac{16877106238925358442813137202931200792}{40763991812368886036169936173653633709} a^{16} + \frac{14510478673254746086590531234715912458}{40763991812368886036169936173653633709} a^{15} - \frac{6560298457817701340872360847142074809}{40763991812368886036169936173653633709} a^{14} - \frac{7168975001960704932549801699436009940}{40763991812368886036169936173653633709} a^{13} + \frac{10509562123980805979131332443302885124}{40763991812368886036169936173653633709} a^{12} - \frac{13011004412777175219410658313267116681}{40763991812368886036169936173653633709} a^{11} - \frac{18151969841140819475157212685030583062}{40763991812368886036169936173653633709} a^{10} + \frac{14575537542290565775747079273125467125}{40763991812368886036169936173653633709} a^{9} + \frac{20359613942666895874455774106984819142}{40763991812368886036169936173653633709} a^{8} - \frac{10991880355934235102833678179691875754}{40763991812368886036169936173653633709} a^{7} + \frac{5885332525141965889192151943103847394}{40763991812368886036169936173653633709} a^{6} + \frac{3779607469772879687022105646206913876}{40763991812368886036169936173653633709} a^{5} - \frac{1539098750346788692967938023224773397}{3705817437488080548742721470332148519} a^{4} + \frac{291215999199425020757403519621491896}{3705817437488080548742721470332148519} a^{3} - \frac{1192331164755945860854363149312517808}{3705817437488080548742721470332148519} a^{2} + \frac{406826049189897172120822072820521324}{3705817437488080548742721470332148519} a + \frac{159749259543289516871518786358479318}{3705817437488080548742721470332148519}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39378334.8224 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 112 conjugacy class representatives for t20n263 are not computed |
| Character table for t20n263 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.6.330327035621.2, 10.6.330327035621.3, 10.10.509033961891961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67 | Data not computed | ||||||