\\ Pari/GP code for working with number field 20.12.25721213848857003468800000000000.2. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^20 - 20*y^18 - 6*y^17 + 158*y^16 + 182*y^15 - 758*y^14 - 1692*y^13 + 2054*y^12 + 7146*y^11 - 956*y^10 - 12796*y^9 - 3112*y^8 + 7624*y^7 - 8568*y^6 - 16856*y^5 + 164*y^4 + 6556*y^3 + 920*y^2 - 628*y - 124, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 20*x^18 - 6*x^17 + 158*x^16 + 182*x^15 - 758*x^14 - 1692*x^13 + 2054*x^12 + 7146*x^11 - 956*x^10 - 12796*x^9 - 3112*x^8 + 7624*x^7 - 8568*x^6 - 16856*x^5 + 164*x^4 + 6556*x^3 + 920*x^2 - 628*x - 124, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])