Normalized defining polynomial
\( x^{20} - 4 x^{19} - 93 x^{18} + 293 x^{17} + 2739 x^{16} - 2934 x^{15} - 44666 x^{14} - 47045 x^{13} + 393985 x^{12} + 879764 x^{11} - 1278851 x^{10} - 3594836 x^{9} - 2375133 x^{8} - 3886749 x^{7} + 16327638 x^{6} + 37153684 x^{5} - 209653 x^{4} - 12836259 x^{3} - 8231425 x^{2} - 37393192 x - 27760407 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2554446851703943625751638890998776095969=67^{8}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{951} a^{18} - \frac{190}{951} a^{17} - \frac{202}{951} a^{16} + \frac{51}{317} a^{15} - \frac{374}{951} a^{14} - \frac{28}{317} a^{13} + \frac{158}{317} a^{12} - \frac{32}{951} a^{11} - \frac{41}{951} a^{10} - \frac{68}{951} a^{9} - \frac{47}{317} a^{8} + \frac{80}{317} a^{7} + \frac{125}{317} a^{6} - \frac{151}{317} a^{5} + \frac{64}{317} a^{4} + \frac{253}{951} a^{3} + \frac{158}{951} a^{2} - \frac{235}{951} a - \frac{36}{317}$, $\frac{1}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{19} - \frac{18146728506492812183314108552907846127551531351175493059601302951322996670}{1094850928184883587073141593831102707068450699541515080267466342366855372302567} a^{18} - \frac{31383275735627711371451674068195007618997612197867025810501990862895691038025}{105953315630795185845787896177203487780817809633049846477496742809695681190571} a^{17} + \frac{146455291590982887829720604881930335223936218134214760446847223801522645277938}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{16} - \frac{921858678266882229110971771170498784685597507936672814700992731634038722447772}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{15} - \frac{1510395756647258284402281846568752056668574991734111821689602769143733740797919}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{14} - \frac{137498594330689247866578255468435088383485541713084012700130334725042534111595}{1094850928184883587073141593831102707068450699541515080267466342366855372302567} a^{13} - \frac{781593033237207440719151230927262704134140370798174197907313994048013698820137}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{12} - \frac{472289719875713521318032940492774346602664767251061448660616062610051440495737}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{11} - \frac{227303869685958370297753193124155915404127142848768509696128402732629207054866}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{10} + \frac{729675156729805470346344402133178880878833999341323459804124618729345438969508}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{9} - \frac{84150838655357439044695664857050404631168745973299715298274683484262790714266}{1094850928184883587073141593831102707068450699541515080267466342366855372302567} a^{8} + \frac{255427130413106461226018849469727095894104331814032929474332549862002484047734}{1094850928184883587073141593831102707068450699541515080267466342366855372302567} a^{7} - \frac{10823157051768716370024386263516398656860945067532600848453332905936785585271}{35317771876931728615262632059067829260272603211016615492498914269898560396857} a^{6} - \frac{8438102215871519302010359438138090669844753361945495765940231817073396850491}{35317771876931728615262632059067829260272603211016615492498914269898560396857} a^{5} + \frac{1487872777377600051084723791742748798503004620143527778889333196557612605280196}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{4} + \frac{4941064664725156874787256620065377911449443346690018737643726173602034827646}{35317771876931728615262632059067829260272603211016615492498914269898560396857} a^{3} - \frac{1635109162066259532133600502904887320990560506461290101009304404251447483667069}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a^{2} + \frac{555083556653346957710952726814242769353167391858082901413329651188518218418748}{3284552784554650761219424781493308121205352098624545240802399027100566116907701} a + \frac{4996560610474100656574281206799165591294078392273918497800112539290044299828}{35317771876931728615262632059067829260272603211016615492498914269898560396857}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7180457129540 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n324 |
| Character table for t20n324 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.2 | $x^{4} - 67 x^{2} + 53868$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.6.2 | $x^{8} + 1541 x^{4} + 646416$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||