Normalized defining polynomial
\( x^{20} - 46 x^{18} + 699 x^{16} - 2364 x^{14} - 28999 x^{12} + 52254 x^{10} + 3670193 x^{8} - 33525396 x^{6} + 122407130 x^{4} - 199176704 x^{2} + 113592964 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25496315463173953254560344368631250944=2^{54}\cdot 73^{4}\cdot 2657^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{146} a^{14} + \frac{27}{146} a^{12} - \frac{31}{146} a^{10} + \frac{45}{146} a^{8} - \frac{9}{73} a^{6} - \frac{7}{73} a^{4} - \frac{14}{73} a^{2}$, $\frac{1}{146} a^{15} + \frac{27}{146} a^{13} - \frac{31}{146} a^{11} + \frac{45}{146} a^{9} - \frac{9}{73} a^{7} - \frac{7}{73} a^{5} - \frac{14}{73} a^{3}$, $\frac{1}{10658} a^{16} + \frac{27}{10658} a^{14} - \frac{2659}{10658} a^{12} + \frac{351}{5329} a^{10} + \frac{931}{10658} a^{8} + \frac{2979}{10658} a^{6} + \frac{2819}{10658} a^{4} + \frac{18}{73} a^{2}$, $\frac{1}{10658} a^{17} + \frac{27}{10658} a^{15} - \frac{2659}{10658} a^{13} + \frac{351}{5329} a^{11} + \frac{931}{10658} a^{9} + \frac{2979}{10658} a^{7} + \frac{2819}{10658} a^{5} + \frac{18}{73} a^{3}$, $\frac{1}{1719822754195971493825348598} a^{18} + \frac{42323120243539510539077}{1719822754195971493825348598} a^{16} - \frac{2290620081424650222001574}{859911377097985746912674299} a^{14} - \frac{195975016810610820310983145}{859911377097985746912674299} a^{12} + \frac{164952495637166167726086051}{1719822754195971493825348598} a^{10} + \frac{630942941037678219015047513}{1719822754195971493825348598} a^{8} + \frac{334653506841998686369703374}{859911377097985746912674299} a^{6} + \frac{3838172583259091067458676}{11779607905451859546748963} a^{4} - \frac{50284334031407569009070}{161364491855504925297931} a^{2} - \frac{130496792331818843491}{2210472491171300346547}$, $\frac{1}{3439645508391942987650697196} a^{19} - \frac{1}{3439645508391942987650697196} a^{18} + \frac{42323120243539510539077}{3439645508391942987650697196} a^{17} - \frac{42323120243539510539077}{3439645508391942987650697196} a^{16} - \frac{1145310040712325111000787}{859911377097985746912674299} a^{15} + \frac{1145310040712325111000787}{859911377097985746912674299} a^{14} - \frac{195975016810610820310983145}{1719822754195971493825348598} a^{13} + \frac{195975016810610820310983145}{1719822754195971493825348598} a^{12} + \frac{164952495637166167726086051}{3439645508391942987650697196} a^{11} - \frac{164952495637166167726086051}{3439645508391942987650697196} a^{10} + \frac{630942941037678219015047513}{3439645508391942987650697196} a^{9} - \frac{630942941037678219015047513}{3439645508391942987650697196} a^{8} + \frac{167326753420999343184851687}{859911377097985746912674299} a^{7} - \frac{167326753420999343184851687}{859911377097985746912674299} a^{6} + \frac{1919086291629545533729338}{11779607905451859546748963} a^{5} - \frac{1919086291629545533729338}{11779607905451859546748963} a^{4} - \frac{25142167015703784504535}{161364491855504925297931} a^{3} + \frac{25142167015703784504535}{161364491855504925297931} a^{2} + \frac{1039987849419740751528}{2210472491171300346547} a - \frac{1039987849419740751528}{2210472491171300346547}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 609161460134 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 114 conjugacy class representatives for t20n1013 are not computed |
| Character table for t20n1013 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.62 | $x^{8} + 8 x^{5} + 10 x^{4} + 4$ | $4$ | $2$ | $22$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 4]^{2}$ |
| 2.12.32.289 | $x^{12} + 4 x^{11} - 4 x^{10} - 4 x^{9} + 4 x^{6} + 8 x^{5} + 6 x^{4} + 8 x^{3} - 4 x^{2} + 8 x - 2$ | $12$ | $1$ | $32$ | 12T193 | $[4/3, 4/3, 2, 3, 19/6, 19/6, 7/2]_{3}^{2}$ | |
| 73 | Data not computed | ||||||
| 2657 | Data not computed | ||||||