Normalized defining polynomial
\( x^{20} - 8 x^{18} - 170 x^{16} + 1169 x^{14} + 10599 x^{12} - 57135 x^{10} - 289765 x^{8} + 1049700 x^{6} + 2937550 x^{4} - 5275375 x^{2} + 753625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(254903851560926116768000000000000000=2^{20}\cdot 5^{15}\cdot 6029^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5}$, $\frac{1}{425} a^{16} - \frac{23}{425} a^{14} - \frac{7}{85} a^{12} + \frac{149}{425} a^{10} - \frac{11}{425} a^{8} + \frac{28}{85} a^{6} - \frac{26}{85} a^{4} + \frac{5}{17} a^{2} - \frac{5}{17}$, $\frac{1}{425} a^{17} - \frac{23}{425} a^{15} - \frac{7}{85} a^{13} + \frac{149}{425} a^{11} - \frac{11}{425} a^{9} + \frac{28}{85} a^{7} - \frac{26}{85} a^{5} + \frac{5}{17} a^{3} - \frac{5}{17} a$, $\frac{1}{3681661042402057726755475} a^{18} - \frac{464934246448079949281}{736332208480411545351095} a^{16} + \frac{182094747154608869562521}{3681661042402057726755475} a^{14} + \frac{94871627397059651533264}{3681661042402057726755475} a^{12} + \frac{1795475868740448678603106}{3681661042402057726755475} a^{10} - \frac{1676988258247312729368853}{3681661042402057726755475} a^{8} - \frac{120446633008432832389847}{736332208480411545351095} a^{6} + \frac{194072132394859968008221}{736332208480411545351095} a^{4} + \frac{613184922626940660417}{3591864431611763635859} a^{2} + \frac{35088377696812286951533}{147266441696082309070219}$, $\frac{1}{18408305212010288633777375} a^{19} + \frac{6338060632235030198902}{18408305212010288633777375} a^{17} - \frac{297962500537829821976346}{3681661042402057726755475} a^{15} + \frac{1264340429101242694149709}{18408305212010288633777375} a^{13} + \frac{8240548375910168557911514}{18408305212010288633777375} a^{11} + \frac{676409430121267671738087}{3681661042402057726755475} a^{9} + \frac{1742040717853784605851158}{3681661042402057726755475} a^{7} + \frac{111581374140565605142223}{736332208480411545351095} a^{5} - \frac{5514113225416656130166}{17959322158058818179295} a^{3} - \frac{60551633003545896183088}{147266441696082309070219} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34978022092.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||