Normalized defining polynomial
\( x^{20} - 18 x^{18} - 147 x^{16} + 2392 x^{14} + 1746 x^{12} - 27260 x^{10} - 2990 x^{8} + 86200 x^{6} - 28755 x^{4} - 60290 x^{2} + 30145 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(254903851560926116768000000000000000=2^{20}\cdot 5^{15}\cdot 6029^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{8} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} + \frac{1}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} + \frac{1}{16} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{16} a^{5} + \frac{1}{32} a^{3} - \frac{1}{32} a$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{8} - \frac{5}{64} a^{4} + \frac{3}{64}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{9} - \frac{5}{64} a^{5} + \frac{3}{64} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{12} + \frac{1}{128} a^{10} - \frac{1}{128} a^{8} - \frac{5}{128} a^{6} + \frac{5}{128} a^{4} + \frac{3}{128} a^{2} - \frac{3}{128}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{13} + \frac{1}{128} a^{11} - \frac{1}{128} a^{9} - \frac{5}{128} a^{7} + \frac{5}{128} a^{5} + \frac{3}{128} a^{3} - \frac{3}{128} a$, $\frac{1}{4352} a^{16} + \frac{3}{2176} a^{14} + \frac{1}{2176} a^{12} + \frac{11}{2176} a^{10} + \frac{27}{1088} a^{8} + \frac{97}{2176} a^{6} + \frac{15}{2176} a^{4} + \frac{1}{128} a^{2} - \frac{1677}{4352}$, $\frac{1}{4352} a^{17} + \frac{3}{2176} a^{15} + \frac{1}{2176} a^{13} + \frac{11}{2176} a^{11} + \frac{27}{1088} a^{9} + \frac{97}{2176} a^{7} + \frac{15}{2176} a^{5} + \frac{1}{128} a^{3} - \frac{1677}{4352} a$, $\frac{1}{444155903882752} a^{18} - \frac{941118043}{444155903882752} a^{16} + \frac{23815307253}{13879871996336} a^{14} + \frac{7615722741}{3469967999084} a^{12} + \frac{3163310442613}{222077951941376} a^{10} + \frac{149866951545}{13063408937728} a^{8} + \frac{862294017513}{55519487985344} a^{6} - \frac{4448858622967}{55519487985344} a^{4} - \frac{3472654269395}{444155903882752} a^{2} - \frac{221903500180351}{444155903882752}$, $\frac{1}{444155903882752} a^{19} - \frac{941118043}{444155903882752} a^{17} + \frac{23815307253}{13879871996336} a^{15} + \frac{7615722741}{3469967999084} a^{13} + \frac{3163310442613}{222077951941376} a^{11} + \frac{149866951545}{13063408937728} a^{9} + \frac{862294017513}{55519487985344} a^{7} - \frac{4448858622967}{55519487985344} a^{5} - \frac{3472654269395}{444155903882752} a^{3} - \frac{221903500180351}{444155903882752} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33616823933.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||