Normalized defining polynomial
\( x^{20} - 22 x^{18} - 33 x^{17} + 91 x^{16} + 481 x^{15} + 918 x^{14} - 424 x^{13} - 5014 x^{12} - 10905 x^{11} - 12048 x^{10} + 4741 x^{9} + 38592 x^{8} + 69751 x^{7} + 82962 x^{6} + 58405 x^{5} + 12221 x^{4} - 11516 x^{3} - 9224 x^{2} - 2668 x - 284 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24792226469882721311035156250000=2^{4}\cdot 5^{16}\cdot 6329^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{15} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{20} a^{18} - \frac{1}{10} a^{17} - \frac{1}{4} a^{15} - \frac{7}{20} a^{14} + \frac{1}{20} a^{13} - \frac{3}{10} a^{12} + \frac{3}{10} a^{11} - \frac{3}{10} a^{10} - \frac{1}{4} a^{9} - \frac{3}{10} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{20} a^{5} + \frac{2}{5} a^{4} - \frac{1}{4} a^{3} - \frac{1}{20} a^{2} + \frac{3}{10}$, $\frac{1}{9545859377750710852751671628686909880} a^{19} + \frac{9556072651524220456869806746668379}{2386464844437677713187917907171727470} a^{18} - \frac{78263648484896735984913395161992997}{2386464844437677713187917907171727470} a^{17} - \frac{644135798551074918332491570138771573}{9545859377750710852751671628686909880} a^{16} + \frac{3038490601229787817449263122599793847}{9545859377750710852751671628686909880} a^{15} + \frac{2926914623612495214189897580246113787}{9545859377750710852751671628686909880} a^{14} + \frac{3607172882377334879267051215415201}{2386464844437677713187917907171727470} a^{13} - \frac{1203391355854328076016330254161262347}{4772929688875355426375835814343454940} a^{12} + \frac{88342091323660689942425566679982315}{954585937775071085275167162868690988} a^{11} - \frac{577169725615561338262807345102180641}{1909171875550142170550334325737381976} a^{10} + \frac{573154307615865991053241497311416097}{1193232422218838856593958953585863735} a^{9} + \frac{2493361253249778410102155445573417411}{9545859377750710852751671628686909880} a^{8} + \frac{353180844214896358736405659091279348}{1193232422218838856593958953585863735} a^{7} - \frac{4368211310956064511206381250273492819}{9545859377750710852751671628686909880} a^{6} + \frac{1447658645818405842063551805095460441}{4772929688875355426375835814343454940} a^{5} + \frac{1802866365629248550273209316195185303}{9545859377750710852751671628686909880} a^{4} - \frac{2212595640938107635491804699136404439}{9545859377750710852751671628686909880} a^{3} + \frac{15232178519472978617523990032884341}{50241365146056372909219324361510052} a^{2} - \frac{103803598746180921043583645264800093}{4772929688875355426375835814343454940} a + \frac{664586881314877746421682109529280937}{2386464844437677713187917907171727470}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 445897816.084 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.625878765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 6329 | Data not computed | ||||||