Properties

Label 20.12.2459863503...7648.1
Degree $20$
Signature $[12, 4]$
Discriminant $2^{20}\cdot 17\cdot 53^{14}$
Root discriminant $37.11$
Ramified primes $2, 17, 53$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T513

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29, 146, -916, -3058, 1067, 6328, -1874, -4006, 4496, -46, -2859, 736, 179, -292, 102, -48, 9, 36, -9, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 9*x^18 + 36*x^17 + 9*x^16 - 48*x^15 + 102*x^14 - 292*x^13 + 179*x^12 + 736*x^11 - 2859*x^10 - 46*x^9 + 4496*x^8 - 4006*x^7 - 1874*x^6 + 6328*x^5 + 1067*x^4 - 3058*x^3 - 916*x^2 + 146*x + 29)
 
gp: K = bnfinit(x^20 - 4*x^19 - 9*x^18 + 36*x^17 + 9*x^16 - 48*x^15 + 102*x^14 - 292*x^13 + 179*x^12 + 736*x^11 - 2859*x^10 - 46*x^9 + 4496*x^8 - 4006*x^7 - 1874*x^6 + 6328*x^5 + 1067*x^4 - 3058*x^3 - 916*x^2 + 146*x + 29, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} - 9 x^{18} + 36 x^{17} + 9 x^{16} - 48 x^{15} + 102 x^{14} - 292 x^{13} + 179 x^{12} + 736 x^{11} - 2859 x^{10} - 46 x^{9} + 4496 x^{8} - 4006 x^{7} - 1874 x^{6} + 6328 x^{5} + 1067 x^{4} - 3058 x^{3} - 916 x^{2} + 146 x + 29 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24598635038608136929355154587648=2^{20}\cdot 17\cdot 53^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7506817807108429245134320812137} a^{19} + \frac{607198147344072788434148529772}{7506817807108429245134320812137} a^{18} - \frac{3652696885573566378123586509355}{7506817807108429245134320812137} a^{17} - \frac{438457999321464641974768834573}{7506817807108429245134320812137} a^{16} + \frac{1906814540841759434666764686037}{7506817807108429245134320812137} a^{15} + \frac{3610302894782922302341385677612}{7506817807108429245134320812137} a^{14} + \frac{2738818981757853634751855988923}{7506817807108429245134320812137} a^{13} - \frac{2608516014771086529871289250807}{7506817807108429245134320812137} a^{12} + \frac{1747160820464586784073416899008}{7506817807108429245134320812137} a^{11} - \frac{711624925011563932820918780033}{7506817807108429245134320812137} a^{10} + \frac{2501283417804520865214983004787}{7506817807108429245134320812137} a^{9} - \frac{3084291323624387429592814104259}{7506817807108429245134320812137} a^{8} - \frac{3006875514368268818714907942988}{7506817807108429245134320812137} a^{7} - \frac{2812698030390885835933781031401}{7506817807108429245134320812137} a^{6} + \frac{59634194015412164456752417941}{7506817807108429245134320812137} a^{5} - \frac{335947612257745289494093079013}{7506817807108429245134320812137} a^{4} + \frac{3534170997938899899994955293554}{7506817807108429245134320812137} a^{3} - \frac{2336355448771809007526292429350}{7506817807108429245134320812137} a^{2} + \frac{2484627494338533353926553583814}{7506817807108429245134320812137} a - \frac{2818454659935862215202691663146}{7506817807108429245134320812137}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 521515250.089 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T513:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 20480
The 128 conjugacy class representatives for t20n513 are not computed
Character table for t20n513 is not computed

Intermediate fields

\(\Q(\sqrt{53}) \), 5.5.2382032.1, 10.10.300726051798272.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
$53$53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$
53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$
53.4.3.2$x^{4} - 212$$4$$1$$3$$C_4$$[\ ]_{4}$