Normalized defining polynomial
\( x^{20} - 4 x^{19} - 6 x^{18} + 71 x^{17} - 108 x^{16} - 254 x^{15} + 829 x^{14} - 129 x^{13} - 2111 x^{12} + 1963 x^{11} + 2115 x^{10} - 3543 x^{9} - 162 x^{8} + 2707 x^{7} - 961 x^{6} - 724 x^{5} + 572 x^{4} - 22 x^{3} - 83 x^{2} + 19 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(243095256386686436431884765625=5^{15}\cdot 6029^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{2} a^{12} - \frac{1}{10} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{3}{10} a + \frac{2}{5}$, $\frac{1}{10} a^{17} + \frac{1}{10} a^{15} + \frac{3}{10} a^{13} + \frac{2}{5} a^{12} - \frac{1}{10} a^{11} + \frac{1}{5} a^{10} + \frac{3}{10} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{10} a^{3} - \frac{3}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{850} a^{18} + \frac{2}{85} a^{17} - \frac{7}{170} a^{16} + \frac{101}{850} a^{15} + \frac{78}{425} a^{14} + \frac{53}{425} a^{13} - \frac{381}{850} a^{12} - \frac{327}{850} a^{11} - \frac{11}{170} a^{10} + \frac{61}{850} a^{9} + \frac{62}{425} a^{8} - \frac{83}{425} a^{7} - \frac{56}{425} a^{6} - \frac{31}{425} a^{5} - \frac{133}{425} a^{4} + \frac{9}{34} a^{3} + \frac{133}{425} a^{2} + \frac{106}{425} a - \frac{339}{850}$, $\frac{1}{227260597343908501750} a^{19} - \frac{31242701849201786}{113630298671954250875} a^{18} - \frac{518475548915155608}{22726059734390850175} a^{17} - \frac{1423907488236631757}{113630298671954250875} a^{16} - \frac{1084635283516797043}{13368270431994617750} a^{15} + \frac{13846288436715556509}{227260597343908501750} a^{14} + \frac{44296772438028474986}{113630298671954250875} a^{13} + \frac{8286831822483385913}{22726059734390850175} a^{12} - \frac{12903724972013358253}{113630298671954250875} a^{11} - \frac{10746059266974362582}{113630298671954250875} a^{10} - \frac{9491467298396643254}{113630298671954250875} a^{9} - \frac{28727850046025001969}{227260597343908501750} a^{8} + \frac{629107771862004687}{1818084778751268014} a^{7} + \frac{16116392180606609426}{113630298671954250875} a^{6} + \frac{27281959952172802193}{227260597343908501750} a^{5} - \frac{51637401959296425133}{227260597343908501750} a^{4} + \frac{36595275660600401093}{113630298671954250875} a^{3} - \frac{364015137467149994}{1748158441106988475} a^{2} + \frac{80093427145339209857}{227260597343908501750} a + \frac{39127763437977805553}{227260597343908501750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33379361.6833 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 6029 | Data not computed | ||||||