Normalized defining polynomial
\( x^{20} + 7 x^{18} - 23 x^{16} - 86 x^{14} + 222 x^{12} + 94 x^{10} - 321 x^{8} - 17 x^{6} + 89 x^{4} - 20 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2255294295609931824728669945856=2^{20}\cdot 3^{2}\cdot 367^{2}\cdot 36497^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 367, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{10} - \frac{3}{7} a^{8} + \frac{3}{7} a^{6} - \frac{3}{7} a^{4} + \frac{2}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{3}{7} a^{9} + \frac{3}{7} a^{7} - \frac{3}{7} a^{5} + \frac{2}{7} a$, $\frac{1}{49} a^{14} + \frac{2}{49} a^{12} + \frac{24}{49} a^{10} + \frac{5}{49} a^{8} - \frac{5}{49} a^{6} - \frac{12}{49} a^{4} - \frac{12}{49} a^{2} + \frac{1}{49}$, $\frac{1}{49} a^{15} + \frac{2}{49} a^{13} + \frac{24}{49} a^{11} + \frac{5}{49} a^{9} - \frac{5}{49} a^{7} - \frac{12}{49} a^{5} - \frac{12}{49} a^{3} + \frac{1}{49} a$, $\frac{1}{343} a^{16} - \frac{1}{343} a^{14} + \frac{18}{343} a^{12} + \frac{80}{343} a^{10} - \frac{167}{343} a^{8} - \frac{46}{343} a^{6} + \frac{24}{343} a^{4} - \frac{12}{343} a^{2} - \frac{52}{343}$, $\frac{1}{343} a^{17} - \frac{1}{343} a^{15} + \frac{18}{343} a^{13} + \frac{80}{343} a^{11} - \frac{167}{343} a^{9} - \frac{46}{343} a^{7} + \frac{24}{343} a^{5} - \frac{12}{343} a^{3} - \frac{52}{343} a$, $\frac{1}{7203} a^{18} + \frac{1}{2401} a^{16} - \frac{5}{1029} a^{14} + \frac{18}{2401} a^{12} + \frac{2}{2401} a^{10} + \frac{10}{1029} a^{8} - \frac{601}{7203} a^{6} + \frac{341}{1029} a^{4} - \frac{752}{2401} a^{2} + \frac{1801}{7203}$, $\frac{1}{7203} a^{19} + \frac{1}{2401} a^{17} - \frac{5}{1029} a^{15} + \frac{18}{2401} a^{13} + \frac{2}{2401} a^{11} + \frac{10}{1029} a^{9} - \frac{601}{7203} a^{7} + \frac{341}{1029} a^{5} - \frac{752}{2401} a^{3} + \frac{1801}{7203} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72211042.621 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 252 conjugacy class representatives for t20n799 are not computed |
| Character table for t20n799 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.1466566140909.1, 10.6.4091999259648.5, 10.6.500587909430272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 367 | Data not computed | ||||||
| 36497 | Data not computed | ||||||