Normalized defining polynomial
\( x^{20} - 9 x^{19} + 19 x^{18} + 59 x^{17} - 322 x^{16} + 378 x^{15} + 551 x^{14} - 2035 x^{13} + 2092 x^{12} + 152 x^{11} - 2349 x^{10} + 2227 x^{9} - 2224 x^{8} + 1382 x^{7} + 1393 x^{6} - 41 x^{5} + 199 x^{4} - 591 x^{3} + 130 x^{2} + 14 x - 2 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22502679947598717278426884000000=2^{8}\cdot 5^{6}\cdot 17^{8}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{3}{16} a^{8} + \frac{7}{16} a^{7} + \frac{3}{8} a^{6} + \frac{1}{8} a^{5} + \frac{7}{16} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{32} a^{15} + \frac{1}{32} a^{13} - \frac{1}{16} a^{12} - \frac{3}{32} a^{11} + \frac{1}{16} a^{10} + \frac{3}{16} a^{9} - \frac{1}{4} a^{8} + \frac{1}{32} a^{7} - \frac{3}{8} a^{6} - \frac{15}{32} a^{5} - \frac{3}{8} a^{4} + \frac{5}{32} a^{3} + \frac{3}{16} a^{2} + \frac{1}{8} a - \frac{3}{16}$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{15} + \frac{1}{64} a^{14} - \frac{3}{64} a^{13} - \frac{1}{64} a^{12} - \frac{3}{64} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} - \frac{15}{64} a^{8} + \frac{19}{64} a^{7} + \frac{21}{64} a^{6} - \frac{13}{64} a^{5} - \frac{23}{64} a^{4} - \frac{7}{64} a^{3} + \frac{15}{32} a^{2} + \frac{3}{32} a - \frac{5}{32}$, $\frac{1}{128} a^{17} - \frac{1}{64} a^{14} - \frac{1}{32} a^{13} + \frac{3}{32} a^{12} + \frac{9}{128} a^{11} - \frac{1}{64} a^{10} - \frac{29}{128} a^{9} + \frac{1}{32} a^{8} + \frac{3}{16} a^{7} + \frac{1}{16} a^{6} + \frac{11}{32} a^{5} + \frac{25}{64} a^{4} - \frac{9}{128} a^{3} - \frac{15}{32} a^{2} - \frac{9}{32} a - \frac{5}{64}$, $\frac{1}{8923804672} a^{18} + \frac{25175351}{8923804672} a^{17} - \frac{2159239}{557737792} a^{16} + \frac{49400123}{4461902336} a^{15} - \frac{127854553}{4461902336} a^{14} + \frac{35215275}{1115475584} a^{13} + \frac{73633853}{8923804672} a^{12} - \frac{293420411}{8923804672} a^{11} + \frac{228849717}{8923804672} a^{10} - \frac{2149244311}{8923804672} a^{9} + \frac{259384445}{2230951168} a^{8} + \frac{133302131}{1115475584} a^{7} - \frac{929781203}{2230951168} a^{6} + \frac{2051263727}{4461902336} a^{5} - \frac{1267516779}{8923804672} a^{4} - \frac{487707971}{8923804672} a^{3} - \frac{468657663}{1115475584} a^{2} - \frac{1149438291}{4461902336} a - \frac{1907004939}{4461902336}$, $\frac{1}{17847609344} a^{19} - \frac{25178161}{17847609344} a^{17} + \frac{45785059}{8923804672} a^{16} - \frac{41723619}{4461902336} a^{15} + \frac{90357979}{8923804672} a^{14} - \frac{969237483}{17847609344} a^{13} + \frac{701973045}{8923804672} a^{12} + \frac{615470233}{8923804672} a^{11} - \frac{496604621}{8923804672} a^{10} - \frac{2467619}{63514624} a^{9} - \frac{1113016853}{4461902336} a^{8} - \frac{1730891517}{4461902336} a^{7} - \frac{3522089095}{8923804672} a^{6} + \frac{6566056739}{17847609344} a^{5} - \frac{600190067}{8923804672} a^{4} - \frac{2204716579}{17847609344} a^{3} + \frac{204148977}{8923804672} a^{2} + \frac{241279221}{4461902336} a - \frac{1762748531}{8923804672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4550375214.04 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6160324.1, 10.10.4743698973122000.1, 10.6.189747958924880.1, 10.6.948739794624400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |