Normalized defining polynomial
\( x^{20} - 5 x^{19} + 35 x^{17} - 45 x^{16} - 66 x^{15} + 175 x^{14} + 5 x^{13} - 280 x^{12} + 75 x^{11} + 297 x^{10} - 75 x^{9} - 280 x^{8} - 5 x^{7} + 175 x^{6} + 66 x^{5} - 45 x^{4} - 35 x^{3} + 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(217008357018762359619140625=3^{4}\cdot 5^{16}\cdot 23^{4}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{16} - \frac{1}{15} a^{15} + \frac{1}{15} a^{11} + \frac{2}{15} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{2}{15} a^{6} - \frac{1}{15} a^{5} + \frac{1}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{17} - \frac{1}{15} a^{15} + \frac{1}{15} a^{12} + \frac{1}{5} a^{11} + \frac{7}{15} a^{10} - \frac{1}{3} a^{9} - \frac{1}{5} a^{7} + \frac{1}{15} a^{6} - \frac{1}{15} a^{5} + \frac{1}{15} a^{2} + \frac{2}{15} a + \frac{1}{15}$, $\frac{1}{315} a^{18} + \frac{2}{105} a^{17} + \frac{4}{315} a^{16} - \frac{4}{63} a^{15} + \frac{4}{105} a^{14} + \frac{4}{315} a^{13} - \frac{1}{15} a^{12} + \frac{2}{21} a^{11} - \frac{13}{315} a^{10} + \frac{109}{315} a^{9} - \frac{92}{315} a^{8} + \frac{31}{105} a^{7} + \frac{109}{315} a^{5} - \frac{4}{105} a^{4} - \frac{62}{315} a^{3} + \frac{143}{315} a^{2} + \frac{17}{35} a + \frac{83}{315}$, $\frac{1}{408555} a^{19} + \frac{31}{408555} a^{18} - \frac{767}{58365} a^{17} + \frac{12974}{408555} a^{16} + \frac{32524}{408555} a^{15} - \frac{6878}{408555} a^{14} + \frac{1591}{408555} a^{13} + \frac{10447}{136185} a^{12} - \frac{124906}{408555} a^{11} + \frac{43286}{136185} a^{10} + \frac{183674}{408555} a^{9} + \frac{22132}{408555} a^{8} + \frac{18603}{45395} a^{7} + \frac{194758}{408555} a^{6} - \frac{97394}{408555} a^{5} + \frac{23540}{81711} a^{4} - \frac{4639}{19455} a^{3} + \frac{163391}{408555} a^{2} - \frac{111361}{408555} a - \frac{3365}{81711}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 798245.370635 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1, 10.6.2946240703125.1, 10.6.14731203515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |