Normalized defining polynomial
\( x^{20} - 21 x^{18} + 68 x^{16} + 42 x^{14} - 44 x^{12} - 117 x^{10} - 44 x^{8} + 42 x^{6} + 68 x^{4} - 21 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211886368245842690175787353515625=3^{16}\cdot 5^{14}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{30} a^{10} - \frac{1}{6} a^{9} + \frac{1}{15} a^{8} + \frac{1}{15} a^{6} + \frac{1}{6} a^{5} - \frac{4}{15} a^{4} - \frac{4}{15} a^{2} - \frac{1}{6} a + \frac{11}{30}$, $\frac{1}{30} a^{11} - \frac{1}{10} a^{9} + \frac{1}{15} a^{7} - \frac{1}{2} a^{6} - \frac{1}{10} a^{5} - \frac{4}{15} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{90} a^{12} - \frac{1}{6} a^{9} - \frac{2}{15} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} + \frac{1}{6} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} + \frac{1}{3} a + \frac{13}{90}$, $\frac{1}{90} a^{13} + \frac{1}{30} a^{9} - \frac{1}{6} a^{8} - \frac{3}{10} a^{7} - \frac{1}{2} a^{6} + \frac{1}{30} a^{5} + \frac{1}{6} a^{4} - \frac{1}{5} a^{3} + \frac{14}{45} a - \frac{1}{6}$, $\frac{1}{90} a^{14} - \frac{1}{30} a^{8} - \frac{1}{2} a^{7} - \frac{1}{30} a^{6} - \frac{4}{15} a^{4} - \frac{19}{45} a^{2} - \frac{1}{30}$, $\frac{1}{90} a^{15} - \frac{1}{30} a^{9} - \frac{1}{6} a^{8} - \frac{1}{30} a^{7} - \frac{4}{15} a^{5} - \frac{1}{3} a^{4} - \frac{19}{45} a^{3} - \frac{1}{30} a + \frac{1}{3}$, $\frac{1}{270} a^{16} + \frac{1}{270} a^{12} - \frac{1}{6} a^{9} - \frac{13}{90} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{52}{135} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{8}{135}$, $\frac{1}{270} a^{17} + \frac{1}{270} a^{13} + \frac{1}{45} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{121}{270} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{61}{270} a - \frac{1}{6}$, $\frac{1}{270} a^{18} + \frac{1}{270} a^{14} - \frac{1}{90} a^{10} + \frac{1}{10} a^{8} + \frac{103}{270} a^{6} - \frac{7}{30} a^{4} - \frac{1}{2} a^{3} + \frac{133}{270} a^{2} - \frac{1}{30}$, $\frac{1}{270} a^{19} + \frac{1}{270} a^{15} - \frac{1}{90} a^{11} + \frac{1}{10} a^{9} + \frac{103}{270} a^{7} - \frac{7}{30} a^{5} - \frac{1}{2} a^{4} + \frac{133}{270} a^{3} - \frac{1}{30} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1874267335.76 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 24 conjugacy class representatives for t20n230 |
| Character table for t20n230 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.6.14556317125078125.1, 10.10.582252685003125.1, 10.6.2911263425015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |