Normalized defining polynomial
\( x^{20} - 8 x^{19} - 5 x^{18} + 222 x^{17} - 574 x^{16} - 2030 x^{15} + 11793 x^{14} + 4334 x^{13} - 104402 x^{12} + 38920 x^{11} + 512568 x^{10} - 267232 x^{9} - 1454928 x^{8} + 576352 x^{7} + 2268740 x^{6} - 159284 x^{5} - 1691906 x^{4} - 756560 x^{3} + 346947 x^{2} + 508220 x + 7775 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2106183370512833937071945009682254848=2^{10}\cdot 19^{12}\cdot 43^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10} a^{15} - \frac{1}{2} a^{14} + \frac{1}{10} a^{13} + \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{10} a^{16} - \frac{2}{5} a^{14} - \frac{1}{2} a^{13} + \frac{1}{10} a^{10} - \frac{3}{10} a^{9} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{2} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{2} a^{14} + \frac{2}{5} a^{13} + \frac{1}{10} a^{11} - \frac{3}{10} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{10} a$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{14} - \frac{1}{2} a^{13} + \frac{1}{10} a^{12} - \frac{3}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{217362507230920908962610174397654527559931731972850} a^{19} + \frac{7475089270967597312072177522214636706889734073581}{217362507230920908962610174397654527559931731972850} a^{18} + \frac{9211074060979419797246990844442431807858132505489}{217362507230920908962610174397654527559931731972850} a^{17} - \frac{1265065139575692267584820934090559413942371520627}{217362507230920908962610174397654527559931731972850} a^{16} - \frac{377889021295649081099168681668927913691719681427}{8360096431958496498561929784525174136920451229725} a^{15} + \frac{53841358233862593925097108953015728260148712120796}{108681253615460454481305087198827263779965865986425} a^{14} - \frac{2618672685233544080585466240000638389057534094954}{8360096431958496498561929784525174136920451229725} a^{13} + \frac{35152249512764381155839506448460149202627467803549}{108681253615460454481305087198827263779965865986425} a^{12} + \frac{2959462762984974835618071778730819782059998610473}{6210357349454883113217433554218700787426620913510} a^{11} + \frac{1456506531628331901729486842532267205149960136632}{3105178674727441556608716777109350393713310456755} a^{10} - \frac{6913676078738510044973440484378600723849733514798}{15525893373637207783043583885546751968566552283775} a^{9} - \frac{734426453875299263447591107473539533945445579751}{3105178674727441556608716777109350393713310456755} a^{8} - \frac{71478519155971867468155852315279138981593490300063}{217362507230920908962610174397654527559931731972850} a^{7} + \frac{6092461012970143790836660288917615239722062410458}{21736250723092090896261017439765452755993173197285} a^{6} + \frac{1636309713761890900582534127631063501957420632831}{3344038572783398599424771913810069654768180491890} a^{5} + \frac{3027385328902700984363262283174778433512531294071}{217362507230920908962610174397654527559931731972850} a^{4} + \frac{38064790732979128522937350759039020588141915436813}{217362507230920908962610174397654527559931731972850} a^{3} + \frac{102009897543508092666920950769125927419633862890577}{217362507230920908962610174397654527559931731972850} a^{2} + \frac{7899588092499083116658155294208709042159925242769}{21736250723092090896261017439765452755993173197285} a + \frac{4071952758891116780413681639654584025925972342515}{8694500289236836358504406975906181102397269278914}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118116765904 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |