Normalized defining polynomial
\( x^{20} - 10 x^{19} + 36 x^{18} - 39 x^{17} - 141 x^{16} + 720 x^{15} - 1572 x^{14} + 1770 x^{13} - 252 x^{12} - 2440 x^{11} + 3846 x^{10} - 2098 x^{9} - 1105 x^{8} + 2212 x^{7} - 890 x^{6} - 335 x^{5} + 378 x^{4} - 54 x^{3} - 36 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(210387604996818000000000000000=2^{16}\cdot 3^{2}\cdot 5^{15}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{30} a^{12} + \frac{2}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{2} a^{9} + \frac{3}{10} a^{8} - \frac{1}{15} a^{7} + \frac{11}{30} a^{6} + \frac{7}{15} a^{5} - \frac{3}{10} a^{4} - \frac{3}{10} a^{3} + \frac{1}{30} a^{2} + \frac{1}{10} a + \frac{1}{30}$, $\frac{1}{30} a^{13} - \frac{2}{15} a^{11} - \frac{1}{10} a^{10} - \frac{1}{30} a^{9} - \frac{4}{15} a^{8} - \frac{1}{30} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{7}{30} a^{3} - \frac{1}{30} a^{2} - \frac{1}{30} a + \frac{1}{5}$, $\frac{1}{150} a^{14} - \frac{1}{75} a^{13} - \frac{1}{150} a^{12} - \frac{23}{150} a^{11} + \frac{1}{150} a^{10} + \frac{59}{150} a^{9} + \frac{11}{75} a^{8} + \frac{8}{75} a^{7} - \frac{11}{75} a^{6} - \frac{7}{50} a^{5} - \frac{37}{75} a^{4} - \frac{12}{25} a^{3} + \frac{32}{75} a^{2} + \frac{7}{150} a - \frac{3}{50}$, $\frac{1}{150} a^{15} - \frac{1}{10} a^{11} - \frac{2}{75} a^{10} - \frac{4}{15} a^{9} - \frac{11}{30} a^{8} + \frac{11}{30} a^{7} + \frac{2}{5} a^{6} + \frac{59}{150} a^{5} - \frac{1}{15} a^{4} + \frac{1}{5} a^{3} + \frac{1}{30} a^{2} + \frac{1}{6} a - \frac{13}{150}$, $\frac{1}{150} a^{16} + \frac{1}{25} a^{11} - \frac{1}{15} a^{10} + \frac{2}{15} a^{9} - \frac{1}{15} a^{8} + \frac{1}{5} a^{7} + \frac{37}{75} a^{6} + \frac{3}{10} a^{4} + \frac{2}{15} a^{3} + \frac{4}{15} a^{2} - \frac{3}{25} a + \frac{13}{30}$, $\frac{1}{150} a^{17} + \frac{1}{150} a^{12} + \frac{2}{15} a^{11} + \frac{1}{15} a^{10} + \frac{13}{30} a^{9} + \frac{7}{30} a^{8} - \frac{11}{25} a^{7} - \frac{11}{30} a^{6} + \frac{1}{6} a^{5} + \frac{13}{30} a^{4} - \frac{13}{30} a^{3} - \frac{23}{150} a^{2} - \frac{1}{3} a - \frac{11}{30}$, $\frac{1}{150} a^{18} + \frac{1}{150} a^{13} - \frac{2}{15} a^{11} - \frac{1}{6} a^{10} - \frac{1}{10} a^{9} + \frac{9}{25} a^{8} + \frac{7}{30} a^{7} + \frac{1}{30} a^{6} + \frac{7}{30} a^{5} - \frac{7}{30} a^{4} + \frac{7}{150} a^{3} - \frac{7}{15} a^{2} - \frac{13}{30} a + \frac{1}{5}$, $\frac{1}{16350} a^{19} + \frac{3}{1090} a^{18} + \frac{2}{8175} a^{17} - \frac{37}{16350} a^{16} + \frac{2}{8175} a^{15} - \frac{41}{16350} a^{14} - \frac{121}{16350} a^{13} - \frac{89}{16350} a^{12} + \frac{1829}{16350} a^{11} + \frac{191}{8175} a^{10} - \frac{107}{8175} a^{9} + \frac{341}{2725} a^{8} + \frac{3992}{8175} a^{7} - \frac{2183}{5450} a^{6} + \frac{4049}{8175} a^{5} - \frac{457}{1635} a^{4} + \frac{754}{2725} a^{3} - \frac{79}{545} a^{2} + \frac{3041}{8175} a - \frac{3707}{8175}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33467788.43 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 22 conjugacy class representatives for t20n135 |
| Character table for t20n135 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.3698000.1, 10.10.68376020000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |