Normalized defining polynomial
\( x^{20} - 6 x^{19} - 20 x^{18} + 172 x^{17} + 81 x^{16} - 1904 x^{15} + 421 x^{14} + 11618 x^{13} - 3206 x^{12} - 55960 x^{11} + 34756 x^{10} + 207572 x^{9} - 367880 x^{8} - 179256 x^{7} + 1187502 x^{6} - 1009852 x^{5} - 494372 x^{4} + 990274 x^{3} - 239735 x^{2} - 99768 x + 22651 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(205110242714618772105806401824722944=2^{12}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{194413726970488089542596383506585720579351333447242} a^{19} - \frac{21452162915828460290384730939707691673755643791373}{194413726970488089542596383506585720579351333447242} a^{18} - \frac{16233747311394492639283444500558967476634819634677}{97206863485244044771298191753292860289675666723621} a^{17} + \frac{6793858235000792273958912362482075532964060793595}{97206863485244044771298191753292860289675666723621} a^{16} - \frac{39828864699528546093626061935209476962907458692407}{97206863485244044771298191753292860289675666723621} a^{15} + \frac{88408533045398173410623238123959513257653823611369}{194413726970488089542596383506585720579351333447242} a^{14} - \frac{70400294032386260403156997984211819964314400619517}{194413726970488089542596383506585720579351333447242} a^{13} + \frac{96022722974752630498397928322641252327912624204413}{194413726970488089542596383506585720579351333447242} a^{12} - \frac{48358993742410472763067137452944757495596139570495}{97206863485244044771298191753292860289675666723621} a^{11} - \frac{12653141772380619145120345587105633272036662377973}{194413726970488089542596383506585720579351333447242} a^{10} - \frac{37662724419373831873129331833293074020490572655627}{97206863485244044771298191753292860289675666723621} a^{9} - \frac{23067484107404907527459266653764932689571838331823}{194413726970488089542596383506585720579351333447242} a^{8} - \frac{67138608575971717937878927485239204716851821112495}{194413726970488089542596383506585720579351333447242} a^{7} + \frac{30210439926030491558119017132918924474812968442628}{97206863485244044771298191753292860289675666723621} a^{6} + \frac{2086158944850846694166676427230005464681485220656}{97206863485244044771298191753292860289675666723621} a^{5} - \frac{80596833872145693646206300503247524222569921088979}{194413726970488089542596383506585720579351333447242} a^{4} + \frac{37550913578314628444956917755815640771345813539928}{97206863485244044771298191753292860289675666723621} a^{3} + \frac{4188220596698250537416360817800804846787733842843}{97206863485244044771298191753292860289675666723621} a^{2} - \frac{94214813891855395302968856985388666616041992418607}{194413726970488089542596383506585720579351333447242} a - \frac{32253589609137359477499428701404329740567401458545}{97206863485244044771298191753292860289675666723621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38971402523.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 33769 | Data not computed | ||||||