Normalized defining polynomial
\( x^{20} - 11 x^{18} - 48 x^{17} - 102 x^{16} + 501 x^{15} + 1905 x^{14} + 1518 x^{13} - 9141 x^{12} - 31062 x^{11} - 7584 x^{10} + 115845 x^{9} + 238607 x^{8} - 268437 x^{7} - 769264 x^{6} + 819072 x^{5} + 631395 x^{4} - 1406673 x^{3} + 94932 x^{2} + 771768 x - 187353 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(202496984818189934420549080247241853=13^{13}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{6} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{7} - \frac{2}{9} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{8} - \frac{2}{9} a^{4}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} + \frac{1}{9} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{2}$, $\frac{1}{27} a^{15} - \frac{1}{9} a^{7} + \frac{2}{27} a^{3}$, $\frac{1}{27} a^{16} - \frac{1}{9} a^{8} + \frac{2}{27} a^{4}$, $\frac{1}{27} a^{17} - \frac{1}{9} a^{9} + \frac{2}{27} a^{5}$, $\frac{1}{81} a^{18} + \frac{1}{81} a^{16} - \frac{1}{27} a^{14} - \frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{1}{27} a^{7} - \frac{1}{81} a^{6} + \frac{2}{27} a^{5} - \frac{28}{81} a^{4} + \frac{11}{27} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{68605759323370132755145038239392117346263821} a^{19} + \frac{92691311924737993116563818640030353423669}{22868586441123377585048346079797372448754607} a^{18} + \frac{51081162825496953217331128484602260734650}{3610829438072112250270791486283795649803359} a^{17} + \frac{1974844580986432904465130954352401829799}{7622862147041125861682782026599124149584869} a^{16} + \frac{358464001572330782230050540010115052219356}{22868586441123377585048346079797372448754607} a^{15} + \frac{1010390737599671749991017894453994334954164}{22868586441123377585048346079797372448754607} a^{14} + \frac{734311659573222682169527729089205330120268}{22868586441123377585048346079797372448754607} a^{13} + \frac{775670940845752893468570788452367035472837}{22868586441123377585048346079797372448754607} a^{12} - \frac{939919196414711032575897499632339018815456}{22868586441123377585048346079797372448754607} a^{11} + \frac{1114844075364660459159559736718229315387814}{22868586441123377585048346079797372448754607} a^{10} - \frac{2488959741319017530820782910429061629451406}{22868586441123377585048346079797372448754607} a^{9} - \frac{2998227322351225279669513321215988925762908}{22868586441123377585048346079797372448754607} a^{8} + \frac{9454217796957531630670863575434690750397477}{68605759323370132755145038239392117346263821} a^{7} - \frac{739180325303933811135383806608328887492431}{22868586441123377585048346079797372448754607} a^{6} + \frac{1176206903198104279642784983041596905876004}{68605759323370132755145038239392117346263821} a^{5} + \frac{513249534585326046164885708923144119901784}{1203609812690704083423597162094598549934453} a^{4} - \frac{1358275065844180261436503522341445909428496}{7622862147041125861682782026599124149584869} a^{3} - \frac{1212202779170965785112704817883703201300593}{2540954049013708620560927342199708049861623} a^{2} - \frac{126740336939773032180509814306096261348620}{282328227668189846728991926911078672206847} a - \frac{26057270921545824115572654441992722398415}{282328227668189846728991926911078672206847}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 143200429240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.160801.1, 10.10.9600508843720093.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||