Normalized defining polynomial
\( x^{20} - 5 x^{19} + 45 x^{17} - 85 x^{16} - 50 x^{15} + 380 x^{14} - 470 x^{13} - 185 x^{12} + 1120 x^{11} - 1151 x^{10} + 140 x^{9} + 880 x^{8} - 1085 x^{7} + 545 x^{6} + 75 x^{5} - 320 x^{4} + 235 x^{3} - 85 x^{2} + 15 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201604956366467437744140625=5^{16}\cdot 6029^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{10} + \frac{2}{5} a^{4} + \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} + \frac{2}{5} a^{5} + \frac{2}{5} a$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{10} + \frac{2}{5} a^{6} + \frac{1}{5}$, $\frac{1}{35} a^{17} + \frac{1}{35} a^{14} - \frac{3}{35} a^{13} - \frac{2}{35} a^{12} - \frac{3}{35} a^{11} - \frac{3}{35} a^{10} - \frac{3}{7} a^{8} + \frac{12}{35} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{5} - \frac{8}{35} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{4}{35} a - \frac{11}{35}$, $\frac{1}{35} a^{18} + \frac{1}{35} a^{15} - \frac{3}{35} a^{14} - \frac{2}{35} a^{13} - \frac{3}{35} a^{12} - \frac{3}{35} a^{11} - \frac{3}{7} a^{9} + \frac{12}{35} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{8}{35} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{4}{35} a^{2} - \frac{11}{35} a$, $\frac{1}{2509366895} a^{19} + \frac{7098332}{501873379} a^{18} + \frac{539573}{71696197} a^{17} - \frac{49607289}{501873379} a^{16} + \frac{25242418}{2509366895} a^{15} + \frac{39830013}{501873379} a^{14} - \frac{110346682}{2509366895} a^{13} + \frac{226024114}{2509366895} a^{12} + \frac{371341583}{2509366895} a^{11} + \frac{163487673}{2509366895} a^{10} + \frac{70388392}{2509366895} a^{9} - \frac{83497674}{501873379} a^{8} - \frac{9973633}{501873379} a^{7} - \frac{4820316}{10678157} a^{6} - \frac{375000564}{2509366895} a^{5} + \frac{13586058}{71696197} a^{4} - \frac{901715629}{2509366895} a^{3} + \frac{119206679}{358480985} a^{2} + \frac{408013161}{2509366895} a - \frac{106012827}{358480985}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 684074.076253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1, 10.6.14198766015625.1, 10.6.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||