Normalized defining polynomial
\( x^{20} - 3 x^{19} - 22 x^{18} + 45 x^{17} + 197 x^{16} - 123 x^{15} - 867 x^{14} - 881 x^{13} + 1053 x^{12} + 5058 x^{11} + 4264 x^{10} - 3792 x^{9} - 10397 x^{8} - 13731 x^{7} - 4137 x^{6} + 6667 x^{5} + 8862 x^{4} + 17125 x^{3} + 7458 x^{2} - 293 x - 109 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19833781175906177048828125000000=2^{6}\cdot 5^{15}\cdot 6329^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6329$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{9} + \frac{1}{5} a^{6} + \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{1}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{1}{5} a^{8} + \frac{1}{5} a^{5} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{1}{5}$, $\frac{1}{25} a^{16} + \frac{1}{25} a^{15} + \frac{1}{25} a^{14} + \frac{2}{25} a^{13} + \frac{2}{25} a^{12} + \frac{1}{25} a^{11} + \frac{12}{25} a^{10} - \frac{8}{25} a^{9} - \frac{4}{25} a^{8} - \frac{8}{25} a^{7} + \frac{12}{25} a^{6} - \frac{9}{25} a^{5} - \frac{3}{25} a^{4} - \frac{8}{25} a^{3} - \frac{4}{25} a^{2} + \frac{1}{25} a + \frac{11}{25}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{14} - \frac{1}{25} a^{12} + \frac{11}{25} a^{11} + \frac{1}{5} a^{10} + \frac{4}{25} a^{9} - \frac{4}{25} a^{8} - \frac{1}{5} a^{7} + \frac{4}{25} a^{6} + \frac{6}{25} a^{5} - \frac{1}{5} a^{4} + \frac{4}{25} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{11}{25}$, $\frac{1}{25} a^{18} + \frac{1}{25} a^{15} - \frac{1}{25} a^{13} + \frac{1}{25} a^{12} + \frac{1}{5} a^{11} + \frac{4}{25} a^{10} + \frac{11}{25} a^{9} - \frac{1}{5} a^{8} + \frac{4}{25} a^{7} - \frac{4}{25} a^{6} - \frac{1}{5} a^{5} + \frac{4}{25} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{11}{25} a - \frac{2}{5}$, $\frac{1}{8082067507528606452216915153475} a^{19} - \frac{548212125336360157298847943}{1616413501505721290443383030695} a^{18} - \frac{27130754787938824364783916211}{8082067507528606452216915153475} a^{17} - \frac{51974931011749808236407218102}{8082067507528606452216915153475} a^{16} - \frac{511609786019946249235111722533}{8082067507528606452216915153475} a^{15} + \frac{69629895629979253195993124883}{1616413501505721290443383030695} a^{14} - \frac{27263140705434452951840959248}{323282700301144258088676606139} a^{13} + \frac{30659872240896519720522779379}{323282700301144258088676606139} a^{12} - \frac{167596580234020748130647507438}{1616413501505721290443383030695} a^{11} - \frac{53229865234043983923876000972}{323282700301144258088676606139} a^{10} + \frac{709949370192882937121565557558}{1616413501505721290443383030695} a^{9} - \frac{230930526998748567645467087547}{1616413501505721290443383030695} a^{8} - \frac{326356022218589449273709886639}{1616413501505721290443383030695} a^{7} + \frac{129445717151450079835650722351}{1616413501505721290443383030695} a^{6} + \frac{389114627683357994524462696174}{1616413501505721290443383030695} a^{5} - \frac{192327708582071379358289533586}{8082067507528606452216915153475} a^{4} - \frac{449555164469581285027247023341}{1616413501505721290443383030695} a^{3} - \frac{1971440980335686158819834107524}{8082067507528606452216915153475} a^{2} - \frac{1161794630454620236393979016918}{8082067507528606452216915153475} a - \frac{184680013809117093913634372817}{8082067507528606452216915153475}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 357382719.867 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.625878765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 6329 | Data not computed | ||||||