Normalized defining polynomial
\( x^{20} - 8 x^{19} - 11 x^{18} + 256 x^{17} - 395 x^{16} - 2967 x^{15} + 9767 x^{14} + 11555 x^{13} - 87949 x^{12} + 49241 x^{11} + 358342 x^{10} - 626572 x^{9} - 419884 x^{8} + 2178107 x^{7} - 1448287 x^{6} - 2635848 x^{5} + 4733767 x^{4} - 913289 x^{3} - 3430589 x^{2} + 2984623 x - 759959 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(194813520645626483248608015673828125=3^{8}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{344743395658878834502151832822051479189430591297} a^{19} - \frac{35138131100866236136630109403585511741873738748}{344743395658878834502151832822051479189430591297} a^{18} - \frac{51971579543178929560631742535418045870692122511}{344743395658878834502151832822051479189430591297} a^{17} - \frac{27487624070627811541740271276528901439563503561}{344743395658878834502151832822051479189430591297} a^{16} - \frac{6835873858265962478943373237373788706788395011}{114914465219626278167383944274017159729810197099} a^{15} - \frac{40102811224870845075601975271205371813882222560}{344743395658878834502151832822051479189430591297} a^{14} - \frac{139449941101643292505345215209895924147876572611}{344743395658878834502151832822051479189430591297} a^{13} - \frac{20883460048130494698201840050590656140522182775}{344743395658878834502151832822051479189430591297} a^{12} - \frac{56813295165340348907023268986811218294777351277}{344743395658878834502151832822051479189430591297} a^{11} - \frac{53832611370269929388048379359144740033570208279}{114914465219626278167383944274017159729810197099} a^{10} + \frac{96961097989895320380932535425368551794440590155}{344743395658878834502151832822051479189430591297} a^{9} - \frac{241573101743257758735140468536255683357620819}{1925940757870831477665652697329896531784528443} a^{8} + \frac{165569566821649394058627304173750897312189784186}{344743395658878834502151832822051479189430591297} a^{7} + \frac{24347385094663160989043576205145383020883407749}{344743395658878834502151832822051479189430591297} a^{6} - \frac{56355169899373003064802667719318698137378329200}{114914465219626278167383944274017159729810197099} a^{5} + \frac{74625062047549596849542897349263523096047522968}{344743395658878834502151832822051479189430591297} a^{4} - \frac{107041619603536761757943932703534890898858990954}{344743395658878834502151832822051479189430591297} a^{3} - \frac{155353706126340220987332895875777349373159728843}{344743395658878834502151832822051479189430591297} a^{2} - \frac{121386639040230810656441238955867103704616640469}{344743395658878834502151832822051479189430591297} a + \frac{28728692380125617680010986891744947211357438882}{114914465219626278167383944274017159729810197099}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18449348920.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||