Properties

Label 20.12.1941580189...0625.1
Degree $20$
Signature $[12, 4]$
Discriminant $5^{10}\cdot 11\cdot 19^{8}\cdot 29^{6}\cdot 41\cdot 4363771$
Root discriminant $58.13$
Ramified primes $5, 11, 19, 29, 41, 4363771$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T955

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-99, 2670, 10448, -2037, -35319, -9205, 52476, 17846, -46144, -13654, 26846, 5016, -10612, -512, 2734, -260, -401, 96, 21, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 21*x^18 + 96*x^17 - 401*x^16 - 260*x^15 + 2734*x^14 - 512*x^13 - 10612*x^12 + 5016*x^11 + 26846*x^10 - 13654*x^9 - 46144*x^8 + 17846*x^7 + 52476*x^6 - 9205*x^5 - 35319*x^4 - 2037*x^3 + 10448*x^2 + 2670*x - 99)
 
gp: K = bnfinit(x^20 - 10*x^19 + 21*x^18 + 96*x^17 - 401*x^16 - 260*x^15 + 2734*x^14 - 512*x^13 - 10612*x^12 + 5016*x^11 + 26846*x^10 - 13654*x^9 - 46144*x^8 + 17846*x^7 + 52476*x^6 - 9205*x^5 - 35319*x^4 - 2037*x^3 + 10448*x^2 + 2670*x - 99, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 21 x^{18} + 96 x^{17} - 401 x^{16} - 260 x^{15} + 2734 x^{14} - 512 x^{13} - 10612 x^{12} + 5016 x^{11} + 26846 x^{10} - 13654 x^{9} - 46144 x^{8} + 17846 x^{7} + 52476 x^{6} - 9205 x^{5} - 35319 x^{4} - 2037 x^{3} + 10448 x^{2} + 2670 x - 99 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(194158018925084147652374366025390625=5^{10}\cdot 11\cdot 19^{8}\cdot 29^{6}\cdot 41\cdot 4363771\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 19, 29, 41, 4363771$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{939} a^{18} - \frac{3}{313} a^{17} - \frac{55}{313} a^{16} - \frac{118}{313} a^{15} + \frac{280}{939} a^{14} - \frac{235}{939} a^{13} - \frac{37}{313} a^{12} - \frac{344}{939} a^{11} + \frac{80}{313} a^{10} + \frac{138}{313} a^{9} - \frac{196}{939} a^{8} + \frac{199}{939} a^{7} + \frac{5}{313} a^{6} - \frac{460}{939} a^{5} - \frac{406}{939} a^{4} + \frac{445}{939} a^{3} + \frac{367}{939} a^{2} + \frac{319}{939} a + \frac{90}{313}$, $\frac{1}{939} a^{19} - \frac{82}{313} a^{17} + \frac{13}{313} a^{16} - \frac{89}{939} a^{15} + \frac{407}{939} a^{14} - \frac{116}{313} a^{13} - \frac{404}{939} a^{12} - \frac{13}{313} a^{11} - \frac{81}{313} a^{10} - \frac{226}{939} a^{9} + \frac{1}{3} a^{8} - \frac{24}{313} a^{7} - \frac{325}{939} a^{6} + \frac{149}{939} a^{5} - \frac{392}{939} a^{4} - \frac{323}{939} a^{3} - \frac{134}{939} a^{2} + \frac{108}{313} a - \frac{129}{313}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40863869814.9 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T955:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 819200
The 275 conjugacy class representatives for t20n955 are not computed
Character table for t20n955 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.9932496465625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ R $20$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ R $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.0.1$x^{8} + x^{2} - 2 x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.5.4.1$x^{5} - 19$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
19.5.4.1$x^{5} - 19$$5$$1$$4$$D_{5}$$[\ ]_{5}^{2}$
19.8.0.1$x^{8} - x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
41Data not computed
4363771Data not computed