Normalized defining polynomial
\( x^{20} - 5 x^{19} - 437 x^{18} + 4845 x^{17} + 56275 x^{16} - 1250245 x^{15} + 2649064 x^{14} + 112224094 x^{13} - 1128990753 x^{12} + 656158961 x^{11} + 65065091965 x^{10} - 541445137114 x^{9} + 1289614208260 x^{8} + 10399205575195 x^{7} - 118954685062451 x^{6} + 619329195312958 x^{5} - 2061700573769882 x^{4} + 4641260420923903 x^{3} - 6920118181161654 x^{2} + 6226784919992940 x - 2576448204562511 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1882683124603340346737834393885030954619199578692919831281=53^{3}\cdot 61^{5}\cdot 397^{5}\cdot 11493420709^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $730.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 61, 397, 11493420709$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{9178} a^{16} - \frac{2}{4589} a^{15} - \frac{1020}{4589} a^{14} - \frac{1410}{4589} a^{13} - \frac{1535}{9178} a^{12} - \frac{967}{9178} a^{11} - \frac{1051}{4589} a^{10} - \frac{1145}{4589} a^{9} + \frac{1752}{4589} a^{8} - \frac{1340}{4589} a^{7} + \frac{1322}{4589} a^{6} - \frac{135}{4589} a^{5} + \frac{1900}{4589} a^{4} - \frac{295}{706} a^{3} - \frac{1854}{4589} a^{2} + \frac{2037}{9178} a + \frac{326}{4589}$, $\frac{1}{9178} a^{17} - \frac{1028}{4589} a^{15} - \frac{901}{4589} a^{14} - \frac{3637}{9178} a^{13} + \frac{2071}{9178} a^{12} + \frac{1604}{4589} a^{11} - \frac{760}{4589} a^{10} + \frac{1761}{4589} a^{9} + \frac{83}{353} a^{8} + \frac{551}{4589} a^{7} + \frac{564}{4589} a^{6} + \frac{1360}{4589} a^{5} + \frac{2187}{9178} a^{4} - \frac{346}{4589} a^{3} - \frac{3617}{9178} a^{2} - \frac{189}{4589} a + \frac{1304}{4589}$, $\frac{1}{222263626} a^{18} + \frac{5}{222263626} a^{17} - \frac{206}{111131813} a^{16} + \frac{10292825}{222263626} a^{15} + \frac{61632189}{222263626} a^{14} + \frac{16452091}{111131813} a^{13} - \frac{54641017}{222263626} a^{12} - \frac{61512157}{222263626} a^{11} - \frac{31420543}{222263626} a^{10} - \frac{65227}{1821833} a^{9} - \frac{2521145}{8548601} a^{8} + \frac{16702450}{111131813} a^{7} - \frac{10731309}{111131813} a^{6} - \frac{54486513}{222263626} a^{5} - \frac{46965779}{222263626} a^{4} + \frac{95297821}{222263626} a^{3} + \frac{39278612}{111131813} a^{2} - \frac{514799}{1821833} a + \frac{185473}{17097202}$, $\frac{1}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{19} + \frac{19769405459485723234072355950265407928224548289991064544058604775949}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{18} - \frac{641601026022431930911931115771523089464035216408736359587575232772749629}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{17} - \frac{827004382785602173791992160015099903040694661850865641812747830371129003}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{16} + \frac{2313335734747772832361326158397236681116241131246557176484162828486999718571}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{15} + \frac{4369394309368821931634110367567335555287347936885764562291062525365956436211}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{14} + \frac{5687048467099634989438187635531689040858552974520504780686488127913023380776}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{13} + \frac{2140070400453792831436269090651166473866716006212903876337298721293011987199}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{12} + \frac{2373857974395103240213345325726355775874341274592235511438121324767905778816}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{11} + \frac{1459621521893565091826204177109783100028195254145358236938547019366645329105}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{10} - \frac{5749212605002872203236563796013105461642848047513341843222446925120136765617}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{9} - \frac{1767910384259999974822685274999432354430268336896135795514349669609260338457}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{8} - \frac{5513952262840846282021898662337261708528770195998878651697377681591878404597}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{7} + \frac{11090478000413905028594122078010549327138977049940125552191732006398927239897}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{6} + \frac{4760800688561952470590871015735255975288819156741295104677403272431907047943}{25060264950658396981654777870250241092161780110607268950534120423221663870238} a^{5} - \frac{356144731934949324026054651112941872851488910170671115490916995048832820041}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{4} - \frac{1211737760972403653107113492448498793251625587395152803750007430073784267065}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{3} - \frac{3785296615840039956610445067564765763044326162221468967725257961222035934157}{12530132475329198490827388935125120546080890055303634475267060211610831935119} a^{2} - \frac{7022765226440784669375611347834339130218242282206520606167150551530381569}{148285591424014183323401052486687817113383314263948336985408996587110437102} a - \frac{2280072057023798648843236555006855622908448931535748266154921650678831976783}{25060264950658396981654777870250241092161780110607268950534120423221663870238}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2321561074110000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.357244751645365635353.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | $20$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 53.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.3.0.1 | $x^{3} - x + 8$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 53.4.3.4 | $x^{4} + 424$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 11493420709 | Data not computed | ||||||