Normalized defining polynomial
\( x^{20} - 82 x^{18} - 28 x^{17} + 2776 x^{16} + 1984 x^{15} - 50192 x^{14} - 54664 x^{13} + 518589 x^{12} + 757984 x^{11} - 2987314 x^{10} - 5559644 x^{9} + 8443210 x^{8} + 20741056 x^{7} - 7190628 x^{6} - 34973776 x^{5} - 8943656 x^{4} + 18959776 x^{3} + 11528688 x^{2} + 845536 x - 385724 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1882282076712230748707114352092643328=2^{42}\cdot 97^{5}\cdot 2657^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{496} a^{18} - \frac{1}{248} a^{17} + \frac{29}{496} a^{16} - \frac{13}{124} a^{15} + \frac{3}{16} a^{14} + \frac{39}{248} a^{13} - \frac{97}{496} a^{12} + \frac{1}{124} a^{11} - \frac{3}{124} a^{10} + \frac{11}{31} a^{9} + \frac{35}{248} a^{8} + \frac{7}{31} a^{7} - \frac{1}{2} a^{6} - \frac{6}{31} a^{5} + \frac{19}{124} a^{4} - \frac{5}{31} a^{3} - \frac{43}{124} a^{2} - \frac{13}{62} a - \frac{45}{124}$, $\frac{1}{70115408370964721049356941044713994818863732595085026260112} a^{19} + \frac{34105053376264961581706684583348253337519349780524750171}{35057704185482360524678470522356997409431866297542513130056} a^{18} + \frac{3933529665435502245242470986775546526936306070814240811679}{70115408370964721049356941044713994818863732595085026260112} a^{17} + \frac{1634192987020590632998706659923930801045936809569289793785}{35057704185482360524678470522356997409431866297542513130056} a^{16} + \frac{1927416651267877438642946489776809730400086105840792245641}{70115408370964721049356941044713994818863732595085026260112} a^{15} - \frac{3528373079306695000597198863787630184038420227349670286651}{35057704185482360524678470522356997409431866297542513130056} a^{14} - \frac{3690355633191020122149936862594334204370886308347311888931}{70115408370964721049356941044713994818863732595085026260112} a^{13} + \frac{4766280141114411459528248088168787785560597041552348808511}{35057704185482360524678470522356997409431866297542513130056} a^{12} + \frac{10495016491988416639678386314140527858397431936251117629}{82683264588401793690279411609332541059980816739487059269} a^{11} + \frac{1588582148105082520286792285813255147234238552896003949}{221884203705584560282775129888335426641973837326218437532} a^{10} + \frac{2708555855510790554938507686095921724558874461631684349437}{35057704185482360524678470522356997409431866297542513130056} a^{9} + \frac{4576176834588804091793290597289965510805719273199873102251}{17528852092741180262339235261178498704715933148771256565028} a^{8} + \frac{69734504866544504132483465303946422651986273462303279929}{8764426046370590131169617630589249352357966574385628282514} a^{7} + \frac{1152579905759203212545207658617087465356992483960810535797}{8764426046370590131169617630589249352357966574385628282514} a^{6} + \frac{4049136823656949424069386695312388651650986093031838684421}{17528852092741180262339235261178498704715933148771256565028} a^{5} - \frac{1144415688688458032105212449263485937091970215519219116139}{8764426046370590131169617630589249352357966574385628282514} a^{4} - \frac{5060307079125478655615820235542311443873714881919282525335}{17528852092741180262339235261178498704715933148771256565028} a^{3} + \frac{3156347672360561028085044123986733914266126798344650076293}{8764426046370590131169617630589249352357966574385628282514} a^{2} + \frac{4610412195734847093154458492573373481602224811803879416661}{17528852092741180262339235261178498704715933148771256565028} a - \frac{844787162117282647914581276609459655972750520601527409025}{8764426046370590131169617630589249352357966574385628282514}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 176154275023 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.24832.1, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 2657 | Data not computed | ||||||