Normalized defining polynomial
\( x^{20} - 20 x^{18} - 64 x^{17} - 536 x^{16} - 392 x^{15} + 10482 x^{14} + 20284 x^{13} - 55312 x^{12} - 110868 x^{11} + 83872 x^{10} + 12360 x^{9} + 204210 x^{8} + 998784 x^{7} - 1491372 x^{6} - 2227824 x^{5} + 3432132 x^{4} + 1329696 x^{3} - 2991816 x^{2} + 314928 x + 472392 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1882282076712230748707114352092643328=2^{42}\cdot 97^{5}\cdot 2657^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 2657$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{18} a^{12} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{2}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{54} a^{13} - \frac{1}{27} a^{11} - \frac{5}{27} a^{10} + \frac{11}{27} a^{9} + \frac{11}{27} a^{8} + \frac{4}{9} a^{7} - \frac{1}{27} a^{6} - \frac{8}{27} a^{5} + \frac{2}{9} a^{4} - \frac{4}{27} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{162} a^{14} - \frac{1}{81} a^{12} - \frac{5}{81} a^{11} + \frac{38}{81} a^{10} - \frac{16}{81} a^{9} - \frac{5}{27} a^{8} - \frac{1}{81} a^{7} - \frac{35}{81} a^{6} + \frac{11}{27} a^{5} + \frac{23}{81} a^{4} + \frac{8}{27} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{486} a^{15} - \frac{1}{243} a^{13} - \frac{5}{243} a^{12} + \frac{38}{243} a^{11} - \frac{97}{243} a^{10} - \frac{32}{81} a^{9} - \frac{82}{243} a^{8} - \frac{35}{243} a^{7} - \frac{16}{81} a^{6} - \frac{58}{243} a^{5} + \frac{35}{81} a^{4} - \frac{1}{9} a^{3}$, $\frac{1}{2916} a^{16} - \frac{1}{1458} a^{14} - \frac{5}{1458} a^{13} + \frac{19}{729} a^{12} + \frac{73}{729} a^{11} + \frac{211}{486} a^{10} + \frac{202}{729} a^{9} - \frac{139}{729} a^{8} - \frac{89}{243} a^{7} - \frac{29}{729} a^{6} - \frac{23}{243} a^{5} + \frac{17}{54} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{8748} a^{17} - \frac{1}{4374} a^{15} - \frac{5}{4374} a^{14} + \frac{19}{2187} a^{13} - \frac{97}{4374} a^{12} + \frac{211}{1458} a^{11} - \frac{1013}{2187} a^{10} + \frac{347}{2187} a^{9} - \frac{251}{729} a^{8} + \frac{943}{2187} a^{7} - \frac{23}{729} a^{6} + \frac{35}{162} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{26244} a^{18} - \frac{1}{13122} a^{16} - \frac{5}{13122} a^{15} + \frac{19}{6561} a^{14} - \frac{97}{13122} a^{13} - \frac{16}{2187} a^{12} - \frac{1013}{6561} a^{11} - \frac{1111}{6561} a^{10} + \frac{964}{2187} a^{9} - \frac{2702}{6561} a^{8} + \frac{949}{2187} a^{7} + \frac{197}{486} a^{6} - \frac{7}{27} a^{5} - \frac{5}{27} a^{4} + \frac{10}{27} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{264667769419273118658733888345965928301523708} a^{19} + \frac{351318292389461133444426495779756414945}{44111294903212186443122314724327654716920618} a^{18} - \frac{5060374936531781238088223037508718854283}{264667769419273118658733888345965928301523708} a^{17} + \frac{25386259489859799592526709737772126326759}{264667769419273118658733888345965928301523708} a^{16} - \frac{44446085095866970381713968956690961691749}{66166942354818279664683472086491482075380927} a^{15} - \frac{47531369963211714649938494247432426096368}{66166942354818279664683472086491482075380927} a^{14} - \frac{19274406704279381806748718083752819709413}{2450627494622899246840128595795980817606701} a^{13} - \frac{798106695538245724979338972522921786109246}{66166942354818279664683472086491482075380927} a^{12} - \frac{2358859640769004377670649541933690059738993}{132333884709636559329366944172982964150761854} a^{11} + \frac{5124392861646566449766099153185041313255}{14703764967737395481040771574775884905640206} a^{10} - \frac{8595859721350466045101920479170893808589342}{66166942354818279664683472086491482075380927} a^{9} - \frac{346631308590216828958290055840639726116220}{22055647451606093221561157362163827358460309} a^{8} - \frac{2546177211621472759161163911167269871297333}{14703764967737395481040771574775884905640206} a^{7} - \frac{299833280285727767179529437039368510173816}{2450627494622899246840128595795980817606701} a^{6} - \frac{35253839836607722270345429141728226719313}{181527962564659203469639155244146727230126} a^{5} - \frac{7502386342127774002721843514079774080329}{20169773618295467052182128360460747470014} a^{4} + \frac{9778764716231970352927456862126328408154}{30254660427443200578273192540691121205021} a^{3} + \frac{9092120454552743997499612683434100985891}{30254660427443200578273192540691121205021} a^{2} + \frac{481211860856993423760492503925628574123}{10084886809147733526091064180230373735007} a + \frac{405368566140195546808977267279201162980}{3361628936382577842030354726743457911669}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151968204084 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 57600 |
| The 76 conjugacy class representatives for t20n658 are not computed |
| Character table for t20n658 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.24832.1, 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.12.26.64 | $x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{6} - 2 x^{4} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_3 \times C_2^2$ | $[2, 3]_{3}^{2}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 2657 | Data not computed | ||||||