Normalized defining polynomial
\( x^{20} - 23 x^{18} - 5347 x^{16} + 168742 x^{14} + 5882811 x^{12} - 229221570 x^{10} - 51334460 x^{8} + 42893457655 x^{6} - 221238827475 x^{4} - 919625677300 x^{2} + 5478679059725 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1853091914135141046229493177600000000000000=2^{20}\cdot 5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{12} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{6}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7}$, $\frac{1}{30145} a^{16} - \frac{23}{30145} a^{14} - \frac{5347}{30145} a^{12} - \frac{12128}{30145} a^{10} + \frac{4536}{30145} a^{8} + \frac{202}{6029} a^{6} + \frac{495}{6029} a^{4} - \frac{2714}{6029} a^{2}$, $\frac{1}{30145} a^{17} - \frac{23}{30145} a^{15} - \frac{5347}{30145} a^{13} - \frac{12128}{30145} a^{11} + \frac{4536}{30145} a^{9} + \frac{202}{6029} a^{7} + \frac{495}{6029} a^{5} - \frac{2714}{6029} a^{3}$, $\frac{1}{16807185086688930854670726744443863842760370918114657585} a^{18} - \frac{10598679119328295090826404858288766353365515590581}{16807185086688930854670726744443863842760370918114657585} a^{16} + \frac{21035444182202718061818232830435942879889248739504561}{1292860391283763911897748211111066449443105455239589045} a^{14} + \frac{756822346578950756133555233790010931182069338560958265}{3361437017337786170934145348888772768552074183622931517} a^{12} - \frac{2189508238614861041538718884259628619749843328578565937}{16807185086688930854670726744443863842760370918114657585} a^{10} + \frac{4489987146115082019811600838703042233078710323928410809}{16807185086688930854670726744443863842760370918114657585} a^{8} + \frac{3622857946555845221263989939169621977640286079299214711}{16807185086688930854670726744443863842760370918114657585} a^{6} - \frac{395255486982358772305535444397522471132010774252043232}{3361437017337786170934145348888772768552074183622931517} a^{4} + \frac{177227741740268114828268179408327071870208189374713}{557544703489432106640262953871085216213646406306673} a^{2} + \frac{12698143679374815500225922934156402344942016963}{92477144383717383751909595931511895208765368437}$, $\frac{1}{84035925433444654273353633722219319213801854590573287925} a^{19} + \frac{546946024370103811549436549012796449860280890716092}{84035925433444654273353633722219319213801854590573287925} a^{17} + \frac{537193175451073133709169359741090602659214979501105296}{6464301956418819559488741055555332247215527276197945225} a^{15} - \frac{2558516814001025864471855194287410763736094825339920723}{84035925433444654273353633722219319213801854590573287925} a^{13} + \frac{28024396788180954249403770848968350332083869075586350606}{84035925433444654273353633722219319213801854590573287925} a^{11} + \frac{4092951598098858147853682998603475169606421431485441121}{16807185086688930854670726744443863842760370918114657585} a^{9} + \frac{436354085270229759633557848814278543324808692676592699}{3361437017337786170934145348888772768552074183622931517} a^{7} - \frac{119270858755089879518605282231335289106255803130240097}{16807185086688930854670726744443863842760370918114657585} a^{5} - \frac{14751045623428172934882892789959242345276204112661}{557544703489432106640262953871085216213646406306673} a^{3} + \frac{21035057612618439850427103773133659510741477080}{92477144383717383751909595931511895208765368437} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77244808806100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||