Normalized defining polynomial
\( x^{20} - 4 x^{19} - 21 x^{18} + 128 x^{17} + 8 x^{16} - 1238 x^{15} + 2095 x^{14} + 2205 x^{13} - 10259 x^{12} + 18915 x^{11} - 13815 x^{10} - 65409 x^{9} + 112870 x^{8} + 82145 x^{7} - 150225 x^{6} - 77692 x^{5} + 37862 x^{4} + 41674 x^{3} + 23377 x^{2} + 7623 x + 829 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1806627930211353113514833291015625=3^{16}\cdot 5^{10}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{5} a^{9} - \frac{1}{3} a^{8} + \frac{2}{15} a^{7} + \frac{2}{15} a^{6} - \frac{1}{5} a^{5} + \frac{2}{15} a^{4} + \frac{4}{15} a^{3} + \frac{1}{15} a^{2} - \frac{2}{5} a - \frac{7}{15}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{15} a^{8} - \frac{1}{5} a^{7} + \frac{1}{15} a^{6} - \frac{1}{15} a^{5} - \frac{4}{15} a^{4} - \frac{1}{5} a^{3} + \frac{2}{15} a^{2} + \frac{2}{15} a - \frac{1}{3}$, $\frac{1}{15} a^{14} - \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{1}{15} a^{9} + \frac{2}{5} a^{8} - \frac{2}{15} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{2}{5} a^{4} + \frac{2}{15} a^{3} - \frac{4}{15} a^{2} - \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{15} a^{15} - \frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{2}{5} a^{9} + \frac{2}{15} a^{8} + \frac{4}{15} a^{7} + \frac{7}{15} a^{6} - \frac{1}{3} a^{4} + \frac{2}{5} a^{3} + \frac{2}{15} a^{2} + \frac{2}{5} a + \frac{1}{3}$, $\frac{1}{75} a^{16} + \frac{2}{75} a^{15} + \frac{2}{75} a^{13} + \frac{1}{75} a^{12} - \frac{1}{75} a^{11} - \frac{1}{15} a^{10} - \frac{4}{15} a^{9} - \frac{7}{25} a^{8} + \frac{2}{15} a^{7} - \frac{4}{75} a^{6} + \frac{11}{75} a^{5} - \frac{29}{75} a^{4} + \frac{1}{75} a^{3} - \frac{1}{15} a^{2} - \frac{11}{25} a + \frac{34}{75}$, $\frac{1}{75} a^{17} + \frac{1}{75} a^{15} + \frac{2}{75} a^{14} + \frac{2}{75} a^{13} + \frac{2}{75} a^{12} - \frac{1}{25} a^{11} - \frac{12}{25} a^{9} + \frac{4}{25} a^{8} - \frac{8}{25} a^{7} + \frac{8}{25} a^{6} - \frac{26}{75} a^{5} - \frac{2}{25} a^{4} + \frac{28}{75} a^{3} - \frac{28}{75} a^{2} - \frac{1}{3} a - \frac{13}{75}$, $\frac{1}{231375} a^{18} + \frac{194}{231375} a^{17} + \frac{11}{46275} a^{16} - \frac{2247}{77125} a^{15} - \frac{683}{46275} a^{14} - \frac{6182}{231375} a^{13} + \frac{2099}{231375} a^{12} - \frac{3547}{77125} a^{11} + \frac{5478}{77125} a^{10} - \frac{28659}{77125} a^{9} - \frac{2269}{15425} a^{8} + \frac{25161}{77125} a^{7} + \frac{14989}{231375} a^{6} + \frac{40379}{231375} a^{5} - \frac{43562}{231375} a^{4} + \frac{26796}{77125} a^{3} - \frac{20407}{231375} a^{2} + \frac{509}{46275} a + \frac{31289}{231375}$, $\frac{1}{315709952068327424387739552804375} a^{19} - \frac{32031785684301334245052189}{63141990413665484877547910560875} a^{18} + \frac{1060085040586593818742673212689}{315709952068327424387739552804375} a^{17} - \frac{54770331220754846668916700579}{35078883563147491598637728089375} a^{16} + \frac{10014103760169912911662664540159}{315709952068327424387739552804375} a^{15} - \frac{2683243272195348093045978574822}{315709952068327424387739552804375} a^{14} + \frac{6876740997905640548822688051347}{315709952068327424387739552804375} a^{13} + \frac{5277196316823183405452124273073}{315709952068327424387739552804375} a^{12} - \frac{6044082347631468755724837999764}{105236650689442474795913184268125} a^{11} - \frac{1593241675549050189150319509101}{105236650689442474795913184268125} a^{10} - \frac{15250236136706463788227583609044}{105236650689442474795913184268125} a^{9} + \frac{2355383817767059199307162566}{105236650689442474795913184268125} a^{8} - \frac{77528681687192800782706300072148}{315709952068327424387739552804375} a^{7} + \frac{34231616004418257052656903241183}{315709952068327424387739552804375} a^{6} + \frac{42684705660304234793321057429057}{315709952068327424387739552804375} a^{5} + \frac{16845586669898471749204096396459}{35078883563147491598637728089375} a^{4} - \frac{14214531365344542602420685221014}{315709952068327424387739552804375} a^{3} - \frac{39644946808899944169064189642432}{315709952068327424387739552804375} a^{2} + \frac{1436080405499588318631232968689}{10184192002204110464120630735625} a + \frac{63319671055744784498738038112404}{315709952068327424387739552804375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4787053745.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.10.582252685003125.1, 10.6.42504446005228125.2, 10.6.8500889201045625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |