Normalized defining polynomial
\( x^{20} - x^{19} - 22 x^{18} + 56 x^{17} + 220 x^{16} - 857 x^{15} - 962 x^{14} + 6806 x^{13} - 172 x^{12} - 32469 x^{11} + 18864 x^{10} + 90045 x^{9} - 84323 x^{8} - 131413 x^{7} + 176120 x^{6} + 76952 x^{5} - 171224 x^{4} - 485 x^{3} + 57265 x^{2} + 71 x - 751 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1806627930211353113514833291015625=3^{16}\cdot 5^{10}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{117} a^{16} + \frac{2}{117} a^{15} + \frac{2}{39} a^{14} - \frac{11}{117} a^{13} + \frac{5}{117} a^{12} + \frac{2}{39} a^{11} + \frac{6}{13} a^{10} + \frac{4}{39} a^{9} - \frac{5}{39} a^{8} - \frac{2}{39} a^{7} - \frac{19}{39} a^{6} + \frac{2}{13} a^{5} - \frac{20}{117} a^{4} + \frac{8}{117} a^{3} - \frac{19}{39} a^{2} - \frac{17}{117} a - \frac{22}{117}$, $\frac{1}{351} a^{17} - \frac{1}{351} a^{16} - \frac{1}{27} a^{15} + \frac{49}{351} a^{14} - \frac{40}{351} a^{13} + \frac{17}{351} a^{12} - \frac{3}{13} a^{11} + \frac{41}{117} a^{10} + \frac{35}{117} a^{9} - \frac{2}{9} a^{8} + \frac{4}{9} a^{7} + \frac{37}{117} a^{6} + \frac{4}{351} a^{5} + \frac{29}{351} a^{4} - \frac{94}{351} a^{3} - \frac{80}{351} a^{2} - \frac{127}{351} a - \frac{25}{351}$, $\frac{1}{351} a^{18} + \frac{1}{351} a^{16} - \frac{4}{117} a^{15} - \frac{2}{39} a^{14} + \frac{46}{351} a^{13} + \frac{50}{351} a^{12} + \frac{5}{117} a^{11} - \frac{5}{117} a^{10} + \frac{10}{39} a^{9} - \frac{10}{117} a^{8} + \frac{20}{117} a^{7} + \frac{79}{351} a^{6} + \frac{23}{117} a^{5} - \frac{14}{351} a^{4} + \frac{34}{117} a^{3} - \frac{14}{39} a^{2} + \frac{61}{351} a + \frac{152}{351}$, $\frac{1}{92104350365937067855585086863691} a^{19} + \frac{20018782567242428925051815254}{92104350365937067855585086863691} a^{18} - \frac{126219092771222343962418124943}{92104350365937067855585086863691} a^{17} + \frac{228773368336925020630282354477}{92104350365937067855585086863691} a^{16} - \frac{766684626418365989862642136111}{30701450121979022618528362287897} a^{15} + \frac{1023498597333776245602268466653}{7084950028149005219660391297207} a^{14} + \frac{53346597190243448094740898850}{787216669794333913295599033023} a^{13} - \frac{1278842126082036995864844836734}{92104350365937067855585086863691} a^{12} - \frac{334970588980957364569034005829}{1137090745258482319204754158811} a^{11} + \frac{159548749736843867522205393883}{829768922215649259960226007781} a^{10} - \frac{3605468525493980470159898677015}{30701450121979022618528362287897} a^{9} + \frac{14143282692887888471106584565490}{30701450121979022618528362287897} a^{8} - \frac{33867256472521073508548559251840}{92104350365937067855585086863691} a^{7} + \frac{14111629155985454008398880278382}{92104350365937067855585086863691} a^{6} + \frac{4568533987929204410324062177123}{92104350365937067855585086863691} a^{5} - \frac{8278313968956618211065898958882}{92104350365937067855585086863691} a^{4} + \frac{1884370500920954122480932174370}{30701450121979022618528362287897} a^{3} - \frac{7904719667118038060817700480523}{92104350365937067855585086863691} a^{2} - \frac{315200225155174722169658617918}{10233816707326340872842787429299} a + \frac{36597049725486784596213852369128}{92104350365937067855585086863691}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3441909364.82 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.6.42504446005228125.1, 10.10.582252685003125.1, 10.6.8500889201045625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.6.4.2 | $x^{6} - 73 x^{3} + 58619$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |