Normalized defining polynomial
\( x^{20} - 20 x^{18} + 140 x^{16} - 48 x^{15} - 560 x^{14} + 480 x^{13} + 2320 x^{12} - 720 x^{11} - 6176 x^{10} + 1440 x^{9} + 16320 x^{8} - 2880 x^{7} - 43200 x^{6} - 18432 x^{5} + 44160 x^{4} + 38400 x^{3} + 1280 x^{2} - 3840 x + 256 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18020324707031250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{16} a^{10}$, $\frac{1}{16} a^{11}$, $\frac{1}{32} a^{12} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{13}$, $\frac{1}{64} a^{14} - \frac{1}{4} a^{4}$, $\frac{1}{64} a^{15}$, $\frac{1}{128} a^{16} - \frac{1}{32} a^{11} - \frac{1}{8} a^{6} - \frac{1}{2} a$, $\frac{1}{128} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{18}$, $\frac{1}{324990005968846144256} a^{19} + \frac{9616785444701327}{20311875373052884016} a^{18} - \frac{264941252059345261}{162495002984423072128} a^{17} - \frac{2615678449206971}{20311875373052884016} a^{16} - \frac{699537243158731}{1846534124822989456} a^{15} + \frac{458705946485933453}{81247501492211536064} a^{14} - \frac{219502882414767819}{20311875373052884016} a^{13} - \frac{410997600895085839}{40623750746105768032} a^{12} - \frac{94271533411640479}{5077968843263221004} a^{11} - \frac{124793192001078039}{5077968843263221004} a^{10} - \frac{1144356063933232683}{20311875373052884016} a^{9} - \frac{137026061557324061}{5077968843263221004} a^{8} + \frac{558153458121354849}{10155937686526442008} a^{7} - \frac{193246019975728295}{5077968843263221004} a^{6} + \frac{12756903056264863}{230816765602873682} a^{5} - \frac{1211905193823683867}{5077968843263221004} a^{4} - \frac{320853319162872029}{2538984421631610502} a^{3} + \frac{299728489551298333}{2538984421631610502} a^{2} - \frac{12057241059092418}{66815379516621329} a - \frac{96186829822320940}{1269492210815805251}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 247750749.896 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5:C_4$ (as 20T88):
| A solvable group of order 320 |
| The 11 conjugacy class representatives for $C_2^4:C_5:C_4$ |
| Character table for $C_2^4:C_5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.11250000.1, 10.10.632812500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||