Normalized defining polynomial
\( x^{20} - 8 x^{19} + 2 x^{18} + 168 x^{17} - 635 x^{16} + 91 x^{15} + 5138 x^{14} - 10945 x^{13} + 34 x^{12} - 9343 x^{11} + 164539 x^{10} - 255161 x^{9} - 607343 x^{8} + 1757562 x^{7} + 102034 x^{6} - 3267388 x^{5} + 1266084 x^{4} + 2415120 x^{3} - 1168449 x^{2} - 669901 x + 243241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{15} a^{16} - \frac{2}{15} a^{14} - \frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{1}{5} a^{11} + \frac{1}{15} a^{10} + \frac{2}{15} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{15} a^{5} - \frac{1}{15} a^{4} - \frac{1}{5} a^{3} - \frac{1}{15} a^{2} + \frac{1}{15} a - \frac{4}{15}$, $\frac{1}{15} a^{17} - \frac{2}{15} a^{15} - \frac{1}{15} a^{14} - \frac{1}{15} a^{13} + \frac{1}{5} a^{12} + \frac{1}{15} a^{11} + \frac{2}{15} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{15} a^{6} - \frac{1}{15} a^{5} - \frac{1}{5} a^{4} - \frac{1}{15} a^{3} + \frac{1}{15} a^{2} - \frac{4}{15} a$, $\frac{1}{75} a^{18} + \frac{1}{75} a^{17} + \frac{2}{75} a^{16} + \frac{2}{75} a^{15} - \frac{2}{15} a^{14} + \frac{8}{75} a^{13} + \frac{8}{75} a^{11} + \frac{2}{25} a^{10} + \frac{14}{75} a^{9} + \frac{12}{25} a^{8} + \frac{4}{25} a^{7} - \frac{34}{75} a^{6} - \frac{2}{75} a^{5} - \frac{1}{25} a^{4} - \frac{22}{75} a^{3} - \frac{37}{75} a^{2} - \frac{1}{5} a + \frac{8}{25}$, $\frac{1}{2643834756319324961092403119428021624279608687437689675} a^{19} - \frac{260808155260857968558219977703932212135868014399421}{881278252106441653697467706476007208093202895812563225} a^{18} - \frac{23172437634572963635399509202121076999927715178468377}{2643834756319324961092403119428021624279608687437689675} a^{17} + \frac{86654359629079400375383366268619893337792711028162729}{2643834756319324961092403119428021624279608687437689675} a^{16} - \frac{93884126335116156311597454335967347940050619438847336}{881278252106441653697467706476007208093202895812563225} a^{15} - \frac{43173454476494327546838860316398954646085611776548472}{2643834756319324961092403119428021624279608687437689675} a^{14} - \frac{966282432964161466825863593798850004963422895266524627}{2643834756319324961092403119428021624279608687437689675} a^{13} - \frac{856710956364438283055781289463335493835302640344006792}{2643834756319324961092403119428021624279608687437689675} a^{12} + \frac{19303815804557712385057388400179866615777057310431973}{881278252106441653697467706476007208093202895812563225} a^{11} - \frac{177489158093876863529341721031944660969258337987139628}{528766951263864992218480623885604324855921737487537935} a^{10} - \frac{249758419433168815455264397177743870796407933079822538}{528766951263864992218480623885604324855921737487537935} a^{9} + \frac{563693512045660319363433394735544580703128136182190388}{2643834756319324961092403119428021624279608687437689675} a^{8} + \frac{1232827734811014970293413446014842096041976009298048893}{2643834756319324961092403119428021624279608687437689675} a^{7} - \frac{105323237795168811465250242041216354268259200435140441}{2643834756319324961092403119428021624279608687437689675} a^{6} + \frac{7880811046607514987753824341991960021768451027393279}{58751883473762776913164513765067147206213526387504215} a^{5} - \frac{160936697509354185832393699488514402165767067049572778}{528766951263864992218480623885604324855921737487537935} a^{4} + \frac{1043089902695452093159598984006037418583951548259645296}{2643834756319324961092403119428021624279608687437689675} a^{3} - \frac{225698983342418031467910340775420011123104264333178642}{2643834756319324961092403119428021624279608687437689675} a^{2} + \frac{487408034820062811800817926550048404987884134456449674}{2643834756319324961092403119428021624279608687437689675} a + \frac{207479845310144022827682664112803576162255851940597744}{2643834756319324961092403119428021624279608687437689675}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130768352923 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||