Normalized defining polynomial
\( x^{20} - 7 x^{19} - 18 x^{18} + 234 x^{17} - 210 x^{16} - 2945 x^{15} + 7088 x^{14} + 17195 x^{13} - 62178 x^{12} - 62496 x^{11} + 239526 x^{10} + 388717 x^{9} - 237833 x^{8} - 2069502 x^{7} - 1925805 x^{6} + 2353437 x^{5} + 6208866 x^{4} + 5565915 x^{3} - 660015 x^{2} - 3782700 x - 1095525 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{15} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{3} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{171} a^{17} - \frac{8}{171} a^{16} + \frac{1}{9} a^{15} - \frac{2}{19} a^{14} + \frac{2}{57} a^{13} + \frac{4}{171} a^{12} - \frac{20}{171} a^{11} - \frac{1}{57} a^{10} + \frac{55}{171} a^{9} - \frac{17}{57} a^{8} + \frac{28}{57} a^{7} - \frac{26}{171} a^{6} - \frac{9}{19} a^{5} - \frac{1}{9} a^{4} - \frac{28}{57} a^{3} + \frac{8}{19} a^{2} + \frac{3}{19} a + \frac{8}{19}$, $\frac{1}{2565} a^{18} - \frac{7}{2565} a^{17} + \frac{29}{855} a^{16} + \frac{13}{855} a^{15} + \frac{22}{171} a^{14} + \frac{59}{513} a^{13} + \frac{383}{2565} a^{12} + \frac{22}{513} a^{11} - \frac{46}{855} a^{10} - \frac{347}{855} a^{9} - \frac{22}{95} a^{8} + \frac{457}{2565} a^{7} - \frac{1133}{2565} a^{6} - \frac{41}{95} a^{5} + \frac{59}{171} a^{4} - \frac{52}{285} a^{3} - \frac{46}{285} a^{2} + \frac{2}{19} a - \frac{2}{19}$, $\frac{1}{500302972567860369498120425706324829909982609960061861945} a^{19} + \frac{68661016029973374204362078047577234675868161085568852}{500302972567860369498120425706324829909982609960061861945} a^{18} + \frac{300170265723235304655238129098585405233389098813480949}{500302972567860369498120425706324829909982609960061861945} a^{17} - \frac{6286042754958604459820613700389785641357996263820842956}{166767657522620123166040141902108276636660869986687287315} a^{16} + \frac{2291540670340148827266435528933072950600846399666148142}{15160696138420011196912740172918934239696442726062480665} a^{15} - \frac{13162506770827801081070693951032779738932729292896790268}{100060594513572073899624085141264965981996521992012372389} a^{14} - \frac{3671860119216418461015718283666392054944944137067207972}{500302972567860369498120425706324829909982609960061861945} a^{13} - \frac{7139178118134768829502981195048855439532943219203929316}{166767657522620123166040141902108276636660869986687287315} a^{12} - \frac{69815743379906841913041737280477334750878995852075847083}{500302972567860369498120425706324829909982609960061861945} a^{11} - \frac{5619316645684089120295366764724261354687948700821693832}{55589219174206707722013380634036092212220289995562429105} a^{10} - \frac{22400949637153290357176393090343628695888101750989905602}{55589219174206707722013380634036092212220289995562429105} a^{9} + \frac{138493927714297567609735076098653260742451230526281300046}{500302972567860369498120425706324829909982609960061861945} a^{8} - \frac{3625309108446612452498355893127967419979266598893397417}{33353531504524024633208028380421655327332173997337457463} a^{7} + \frac{139698862659857161184819582794301002651784378267821650731}{500302972567860369498120425706324829909982609960061861945} a^{6} - \frac{4909768775708916228310316699143091942188155977686756734}{18529739724735569240671126878012030737406763331854143035} a^{5} - \frac{71141209754984868149697596293904957220166812441477648071}{166767657522620123166040141902108276636660869986687287315} a^{4} - \frac{3648577815798862612376134345240578960855472248278625763}{18529739724735569240671126878012030737406763331854143035} a^{3} + \frac{4323194608052963666095017624538635652774532061101656182}{18529739724735569240671126878012030737406763331854143035} a^{2} + \frac{114116272904909777011142235168861418900641752121814939}{336904358631555804375838670509309649771032060579166237} a - \frac{103827070047446525207502483778618524995151055149999157}{3705947944947113848134225375602406147481352666370828607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 195221868018 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||