Normalized defining polynomial
\( x^{20} - 8 x^{19} - 7 x^{18} + 207 x^{17} - 394 x^{16} - 1468 x^{15} + 5814 x^{14} + 1761 x^{13} - 31742 x^{12} + 24039 x^{11} + 88202 x^{10} - 123986 x^{9} - 132368 x^{8} + 257416 x^{7} + 93723 x^{6} - 346819 x^{5} - 260864 x^{4} - 65625 x^{3} - 6201 x^{2} - 99 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{15} a^{16} - \frac{2}{15} a^{14} - \frac{1}{5} a^{13} - \frac{7}{15} a^{12} - \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{4}{15} a^{9} + \frac{2}{15} a^{8} - \frac{1}{3} a^{7} + \frac{7}{15} a^{6} + \frac{2}{5} a^{5} + \frac{2}{15} a^{4} - \frac{1}{15} a^{3} - \frac{7}{15} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{15} a^{17} - \frac{2}{15} a^{15} + \frac{2}{15} a^{14} - \frac{7}{15} a^{13} - \frac{2}{5} a^{12} + \frac{1}{15} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{3} a^{8} + \frac{7}{15} a^{7} - \frac{4}{15} a^{6} + \frac{7}{15} a^{5} - \frac{2}{5} a^{4} - \frac{2}{15} a^{3} - \frac{7}{15} a^{2} + \frac{2}{5} a$, $\frac{1}{15} a^{18} + \frac{2}{15} a^{15} - \frac{1}{15} a^{14} + \frac{1}{5} a^{13} + \frac{7}{15} a^{12} + \frac{7}{15} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{15} a^{8} + \frac{1}{15} a^{7} + \frac{1}{15} a^{6} + \frac{1}{15} a^{5} + \frac{7}{15} a^{4} + \frac{1}{15} a^{3} + \frac{2}{15} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{203405272628436225187946557800927404861955} a^{19} + \frac{929778390272322130093197100667771460479}{203405272628436225187946557800927404861955} a^{18} - \frac{254640175988609899759551669432032220097}{67801757542812075062648852600309134953985} a^{17} + \frac{1891171514126043627109956173927354133989}{67801757542812075062648852600309134953985} a^{16} + \frac{1420238639276505307195394680490083285783}{67801757542812075062648852600309134953985} a^{15} - \frac{13130250305817843515602520956977422911958}{203405272628436225187946557800927404861955} a^{14} - \frac{30756785607649863301478333539518952104959}{203405272628436225187946557800927404861955} a^{13} + \frac{4720398388922956585675251304618808134247}{67801757542812075062648852600309134953985} a^{12} + \frac{32010455845800426069144564196674137449156}{203405272628436225187946557800927404861955} a^{11} + \frac{2317001539001108711182532698330705574443}{13560351508562415012529770520061826990797} a^{10} + \frac{21079627894618636379729166057227641604827}{67801757542812075062648852600309134953985} a^{9} + \frac{6600087247609181014697450334136683047460}{13560351508562415012529770520061826990797} a^{8} - \frac{88287013108614185128665858814362605421107}{203405272628436225187946557800927404861955} a^{7} + \frac{13712100245637253395266541954746946659673}{67801757542812075062648852600309134953985} a^{6} - \frac{477677885315442248878667039312190025486}{203405272628436225187946557800927404861955} a^{5} - \frac{1218834550211924693544894359215321280865}{13560351508562415012529770520061826990797} a^{4} - \frac{26137126788079603843351008230688805143517}{203405272628436225187946557800927404861955} a^{3} + \frac{48738271706404595032287669643889297945381}{203405272628436225187946557800927404861955} a^{2} + \frac{5695668451862449238270087553059788664918}{13560351508562415012529770520061826990797} a + \frac{10393649871602568735814513068304448152391}{67801757542812075062648852600309134953985}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134860480257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 239 | Data not computed | ||||||