Normalized defining polynomial
\( x^{20} - 31 x^{18} + 2981 x^{14} - 2793 x^{12} - 76738 x^{10} + 133708 x^{8} + 563958 x^{6} - 1495909 x^{4} + 530453 x^{2} + 571787 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1741167538834544763439794528727334912=2^{36}\cdot 83^{7}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{83} a^{12} - \frac{20}{83} a^{10} - \frac{22}{83} a^{8} + \frac{24}{83} a^{6} + \frac{4}{83} a^{4} + \frac{19}{83} a^{2}$, $\frac{1}{83} a^{13} - \frac{20}{83} a^{11} - \frac{22}{83} a^{9} + \frac{24}{83} a^{7} + \frac{4}{83} a^{5} + \frac{19}{83} a^{3}$, $\frac{1}{83} a^{14} - \frac{7}{83} a^{10} - \frac{1}{83} a^{8} - \frac{14}{83} a^{6} + \frac{16}{83} a^{4} - \frac{35}{83} a^{2}$, $\frac{1}{83} a^{15} - \frac{7}{83} a^{11} - \frac{1}{83} a^{9} - \frac{14}{83} a^{7} + \frac{16}{83} a^{5} - \frac{35}{83} a^{3}$, $\frac{1}{8549} a^{16} + \frac{18}{8549} a^{14} + \frac{50}{8549} a^{12} - \frac{3674}{8549} a^{10} - \frac{3278}{8549} a^{8} - \frac{3101}{8549} a^{6} + \frac{979}{8549} a^{4} - \frac{3614}{8549} a^{2} + \frac{50}{103}$, $\frac{1}{8549} a^{17} + \frac{18}{8549} a^{15} + \frac{50}{8549} a^{13} - \frac{3674}{8549} a^{11} - \frac{3278}{8549} a^{9} - \frac{3101}{8549} a^{7} + \frac{979}{8549} a^{5} - \frac{3614}{8549} a^{3} + \frac{50}{103} a$, $\frac{1}{487238084259538423387} a^{18} - \frac{104299556831815}{487238084259538423387} a^{16} + \frac{742797825492062}{5870338364572752089} a^{14} - \frac{2152153854180138361}{487238084259538423387} a^{12} - \frac{226428921462227114011}{487238084259538423387} a^{10} + \frac{68344783240489660205}{487238084259538423387} a^{8} + \frac{85349598211625507702}{487238084259538423387} a^{6} - \frac{38967119028886846883}{487238084259538423387} a^{4} + \frac{1479787023854337699}{5870338364572752089} a^{2} + \frac{26100846278062369}{70726968247864483}$, $\frac{1}{487238084259538423387} a^{19} - \frac{104299556831815}{487238084259538423387} a^{17} + \frac{742797825492062}{5870338364572752089} a^{15} - \frac{2152153854180138361}{487238084259538423387} a^{13} - \frac{226428921462227114011}{487238084259538423387} a^{11} + \frac{68344783240489660205}{487238084259538423387} a^{9} + \frac{85349598211625507702}{487238084259538423387} a^{7} - \frac{38967119028886846883}{487238084259538423387} a^{5} + \frac{1479787023854337699}{5870338364572752089} a^{3} + \frac{26100846278062369}{70726968247864483} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85452739669.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 69 conjugacy class representatives for t20n691 are not computed |
| Character table for t20n691 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $83$ | 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 83.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.6.3.1 | $x^{6} - 166 x^{4} + 6889 x^{2} - 5146083$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 983 | Data not computed | ||||||