Normalized defining polynomial
\( x^{20} - 25 x^{18} + 182 x^{16} - 287 x^{14} - 460 x^{12} - 3649 x^{10} + 10370 x^{8} + 42199 x^{6} - 100719 x^{4} - 41154 x^{2} + 130321 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17379204847431458802903040000000000=2^{20}\cdot 5^{10}\cdot 19^{4}\cdot 149^{2}\cdot 765899^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 149, 765899$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} + \frac{8}{19} a^{10} + \frac{9}{19} a^{8} - \frac{9}{19} a^{6} + \frac{3}{19} a^{4} + \frac{3}{19} a^{2}$, $\frac{1}{19} a^{13} + \frac{8}{19} a^{11} + \frac{9}{19} a^{9} - \frac{9}{19} a^{7} + \frac{3}{19} a^{5} + \frac{3}{19} a^{3}$, $\frac{1}{19} a^{14} + \frac{2}{19} a^{10} - \frac{5}{19} a^{8} - \frac{1}{19} a^{6} - \frac{2}{19} a^{4} - \frac{5}{19} a^{2}$, $\frac{1}{19} a^{15} + \frac{2}{19} a^{11} - \frac{5}{19} a^{9} - \frac{1}{19} a^{7} - \frac{2}{19} a^{5} - \frac{5}{19} a^{3}$, $\frac{1}{1805} a^{16} - \frac{44}{1805} a^{14} - \frac{8}{1805} a^{12} - \frac{401}{1805} a^{10} + \frac{452}{1805} a^{8} - \frac{476}{1805} a^{6} + \frac{452}{1805} a^{4} - \frac{27}{95} a^{2} + \frac{1}{5}$, $\frac{1}{1805} a^{17} - \frac{44}{1805} a^{15} - \frac{8}{1805} a^{13} - \frac{401}{1805} a^{11} + \frac{452}{1805} a^{9} - \frac{476}{1805} a^{7} + \frac{452}{1805} a^{5} - \frac{27}{95} a^{3} + \frac{1}{5} a$, $\frac{1}{7478786974073586355} a^{18} + \frac{1540767091099807}{7478786974073586355} a^{16} + \frac{98164419599267238}{7478786974073586355} a^{14} + \frac{4212666584075146}{7478786974073586355} a^{12} + \frac{456702705299239441}{7478786974073586355} a^{10} + \frac{2287045430699759646}{7478786974073586355} a^{8} + \frac{2638999045767954281}{7478786974073586355} a^{6} - \frac{5754248717293329}{393620367056504545} a^{4} + \frac{9026538474048658}{20716861424026555} a^{2} - \frac{544103661294526}{1090361127580345}$, $\frac{1}{7478786974073586355} a^{19} + \frac{1540767091099807}{7478786974073586355} a^{17} + \frac{98164419599267238}{7478786974073586355} a^{15} + \frac{4212666584075146}{7478786974073586355} a^{13} + \frac{456702705299239441}{7478786974073586355} a^{11} + \frac{2287045430699759646}{7478786974073586355} a^{9} + \frac{2638999045767954281}{7478786974073586355} a^{7} - \frac{5754248717293329}{393620367056504545} a^{5} + \frac{9026538474048658}{20716861424026555} a^{3} - \frac{544103661294526}{1090361127580345} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7238646903.12 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.356621721875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.4.2 | $x^{8} - 13718 x^{2} + 1303210$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $149$ | 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 149.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 765899 | Data not computed | ||||||