Normalized defining polynomial
\( x^{20} - 3 x^{19} - 30 x^{18} + 101 x^{17} + 159 x^{16} - 923 x^{15} + 1411 x^{14} - 755 x^{13} - 4153 x^{12} + 31035 x^{11} - 62649 x^{10} + 14499 x^{9} + 60948 x^{8} - 305712 x^{7} + 408264 x^{6} - 547740 x^{5} - 821616 x^{4} + 1875378 x^{3} + 406400 x^{2} - 366925 x + 21731 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(171372946259251659623031065673828125=5^{13}\cdot 97^{2}\cdot 419^{4}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{21465882108675771423760500830517277487488695941785575113374765939} a^{19} + \frac{383802005454705169976718485226076236626116425919266657259217840}{3066554586953681631965785832931039641069813705969367873339252277} a^{18} + \frac{1871577432249531054049406474241686471060926691345666774563364300}{21465882108675771423760500830517277487488695941785575113374765939} a^{17} - \frac{576865902004178026986319488395011177776327115153877079275589511}{21465882108675771423760500830517277487488695941785575113374765939} a^{16} + \frac{6166574979457428294735039379574926779066666184931851762066432772}{21465882108675771423760500830517277487488695941785575113374765939} a^{15} - \frac{9748591958685806821966472978074713609631007076172250274525251146}{21465882108675771423760500830517277487488695941785575113374765939} a^{14} - \frac{10086398648720583807072934183828331403088639552334895120534009825}{21465882108675771423760500830517277487488695941785575113374765939} a^{13} - \frac{2915959858675708004178184179929184098179526807568820630332776186}{21465882108675771423760500830517277487488695941785575113374765939} a^{12} + \frac{423640757938489151948605855646790798851593079653386120059995634}{21465882108675771423760500830517277487488695941785575113374765939} a^{11} - \frac{6166379698779332362761964509298269023728851524784523975144829580}{21465882108675771423760500830517277487488695941785575113374765939} a^{10} - \frac{10574305035331329756296859238715466745814665387710141160971865641}{21465882108675771423760500830517277487488695941785575113374765939} a^{9} - \frac{470659931884849773018168027479092522899211586929030469469250232}{3066554586953681631965785832931039641069813705969367873339252277} a^{8} + \frac{1696129007628749755869708513768149377327854689947600615151491416}{21465882108675771423760500830517277487488695941785575113374765939} a^{7} + \frac{296763773358747513921820612471980730841037956691380734534739870}{21465882108675771423760500830517277487488695941785575113374765939} a^{6} - \frac{3524492953831725962173386029711186905349187462878109606793779227}{21465882108675771423760500830517277487488695941785575113374765939} a^{5} - \frac{1266345213246864643472148090899340504249284606623863694960893171}{21465882108675771423760500830517277487488695941785575113374765939} a^{4} + \frac{714048953396948798812213501227152084426043222593527602845310850}{3066554586953681631965785832931039641069813705969367873339252277} a^{3} + \frac{6103430556271600507082071262392363933949104740679665731601368300}{21465882108675771423760500830517277487488695941785575113374765939} a^{2} - \frac{8285554739170648632544592037946595517950262691416985258868059077}{21465882108675771423760500830517277487488695941785575113374765939} a - \frac{7475052636753472194863849340827719144363642582265318469135804265}{21465882108675771423760500830517277487488695941785575113374765939}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11078408249.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 97 | Data not computed | ||||||
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||