Normalized defining polynomial
\( x^{20} - 4 x^{19} + x^{18} + 12 x^{17} - 25 x^{16} + 45 x^{15} - 45 x^{14} + 47 x^{13} - 14 x^{12} - 474 x^{11} + 671 x^{10} + 563 x^{9} - 1021 x^{8} - 201 x^{7} + 484 x^{6} + 41 x^{5} - 46 x^{4} - 38 x^{3} - 5 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1712060409270190644695047369=11^{16}\cdot 43^{2}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{12} a^{15} - \frac{1}{4} a^{14} - \frac{1}{6} a^{13} - \frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{12}$, $\frac{1}{12} a^{16} + \frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{12} a^{5} + \frac{1}{3} a^{4} + \frac{1}{4} a^{3} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{12} a^{17} + \frac{1}{6} a^{14} + \frac{1}{12} a^{13} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} - \frac{1}{3} a^{9} + \frac{5}{12} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{5}{12} a^{5} + \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{12}$, $\frac{1}{12} a^{18} + \frac{1}{12} a^{14} - \frac{1}{6} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{6} a^{10} + \frac{1}{12} a^{9} - \frac{1}{2} a^{7} + \frac{1}{12} a^{6} - \frac{5}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{4} a^{3} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{8791834998151668} a^{19} + \frac{120969392786969}{2930611666050556} a^{18} - \frac{60217729937281}{2930611666050556} a^{17} - \frac{69050287141561}{2930611666050556} a^{16} + \frac{39233251127353}{1465305833025278} a^{15} + \frac{1513218762831415}{8791834998151668} a^{14} - \frac{606364934766089}{8791834998151668} a^{13} - \frac{798761674404449}{4395917499075834} a^{12} + \frac{1947494468234561}{8791834998151668} a^{11} - \frac{399806377227695}{4395917499075834} a^{10} - \frac{1066868263683851}{8791834998151668} a^{9} - \frac{3526297183522345}{8791834998151668} a^{8} - \frac{223471776920127}{732652916512639} a^{7} + \frac{3216269181201307}{8791834998151668} a^{6} + \frac{814833678743920}{2197958749537917} a^{5} + \frac{818560460799106}{2197958749537917} a^{4} - \frac{39724339558091}{4395917499075834} a^{3} - \frac{3400468178691251}{8791834998151668} a^{2} - \frac{537000660077683}{2197958749537917} a - \frac{2020296635212259}{8791834998151668}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2236032.59751 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n751 are not computed |
| Character table for t20n751 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.617567936161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 43 | Data not computed | ||||||
| 67 | Data not computed | ||||||