Normalized defining polynomial
\( x^{20} - x^{19} - 14 x^{18} + 2 x^{17} - 43 x^{16} + 482 x^{15} + 938 x^{14} - 4351 x^{13} - 3611 x^{12} + 9101 x^{11} + 10834 x^{10} + 13205 x^{9} - 29882 x^{8} - 60030 x^{7} + 33555 x^{6} + 68268 x^{5} - 9937 x^{4} - 29406 x^{3} - 1980 x^{2} + 3807 x + 729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(170951887142655083512160513274121=13^{2}\cdot 97^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{16} - \frac{4}{27} a^{15} - \frac{1}{9} a^{14} - \frac{7}{27} a^{12} + \frac{8}{27} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{10}{27} a^{8} + \frac{5}{27} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{5}{27} a^{4} - \frac{1}{9} a^{3} + \frac{8}{27} a^{2} + \frac{4}{9} a$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{15} - \frac{1}{9} a^{14} + \frac{2}{27} a^{13} - \frac{2}{27} a^{12} + \frac{8}{27} a^{11} + \frac{2}{9} a^{10} - \frac{5}{27} a^{9} + \frac{2}{27} a^{7} + \frac{13}{27} a^{5} + \frac{4}{27} a^{4} + \frac{5}{27} a^{3} - \frac{10}{27} a^{2} - \frac{2}{9} a$, $\frac{1}{2241} a^{18} + \frac{40}{2241} a^{17} - \frac{20}{2241} a^{16} + \frac{80}{747} a^{15} - \frac{277}{2241} a^{14} + \frac{68}{747} a^{13} - \frac{884}{2241} a^{12} + \frac{64}{747} a^{11} - \frac{479}{2241} a^{10} - \frac{131}{2241} a^{9} + \frac{334}{2241} a^{8} - \frac{194}{747} a^{7} - \frac{1094}{2241} a^{6} + \frac{1010}{2241} a^{5} - \frac{28}{2241} a^{4} + \frac{418}{2241} a^{3} - \frac{55}{249} a^{2} + \frac{71}{249} a + \frac{4}{83}$, $\frac{1}{8146206581014469692922420694316847409} a^{19} + \frac{490406142878679887188038556338164}{8146206581014469692922420694316847409} a^{18} + \frac{38256742211935885810140333463321006}{8146206581014469692922420694316847409} a^{17} - \frac{146499399871353350550352173248742067}{8146206581014469692922420694316847409} a^{16} - \frac{235957864189877233130251729792685089}{8146206581014469692922420694316847409} a^{15} - \frac{778699690958611126992453574599719614}{8146206581014469692922420694316847409} a^{14} + \frac{1211522503697370912486423906962565284}{8146206581014469692922420694316847409} a^{13} + \frac{545376764964630535579776356242527068}{8146206581014469692922420694316847409} a^{12} + \frac{2546123508420050631156209859412791940}{8146206581014469692922420694316847409} a^{11} + \frac{1799400780144965535626114811630479339}{8146206581014469692922420694316847409} a^{10} - \frac{3518738862736911089248728080104523873}{8146206581014469692922420694316847409} a^{9} + \frac{2705828044171098015920672843064742802}{8146206581014469692922420694316847409} a^{8} + \frac{286138561842444402860998778599195642}{8146206581014469692922420694316847409} a^{7} + \frac{444173205116804104204088224482476171}{2715402193671489897640806898105615803} a^{6} - \frac{1144553440484354829972327454859798917}{2715402193671489897640806898105615803} a^{5} + \frac{123051289534831613060833657529684905}{301711354852387766404534099789512867} a^{4} + \frac{3517333519550980342724914466913125936}{8146206581014469692922420694316847409} a^{3} + \frac{762568697010055135619532444155437618}{2715402193671489897640806898105615803} a^{2} + \frac{42998330225309873857446716708330868}{100570451617462588801511366596504289} a - \frac{8751240779502688427454907128449033}{100570451617462588801511366596504289}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1179350412.82 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||